Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nat Chem Biol ; 17(2): 152-160, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33199914

RESUMEN

Heterobifunctional chimeric degraders are a class of ligands that recruit target proteins to E3 ubiquitin ligases to drive compound-dependent protein degradation. Advancing from initial chemical tools, protein degraders represent a mechanism of growing interest in drug discovery. Critical to the mechanism of action is the formation of a ternary complex between the target, degrader and E3 ligase to promote ubiquitination and subsequent degradation. However, limited insights into ternary complex structures exist, including a near absence of studies on one of the most widely co-opted E3s, cellular inhibitor of apoptosis 1 (cIAP1). In this work, we use a combination of biochemical, biophysical and structural studies to characterize degrader-mediated ternary complexes of Bruton's tyrosine kinase and cIAP1. Our results reveal new insights from unique ternary complex structures and show that increased ternary complex stability or rigidity need not always correlate with increased degradation efficiency.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/genética , Proteínas Inhibidoras de la Apoptosis/genética , Cromatografía en Gel , Reactivos de Enlaces Cruzados , Humanos , Cinética , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Proteolisis , Espectrometría de Masa por Ionización de Electrospray , Ubiquitina-Proteína Ligasas , Ubiquitinación , Difracción de Rayos X
2.
Sensors (Basel) ; 23(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36992056

RESUMEN

The passive optical network (PON) is widely used in optical fiber communication thanks to its low cost and low resource consumption. However, the passiveness brings about a critical problem that it requires manual work to identify the topology structure, which is costly and prone to bringing noise to the topology logs. In this paper, we provide a base solution firstly introducing neural networks for such problems, and based on that solution we propose a complete methodology (PT-Predictor) for predicting PON topology through representation learning on its optical power data. Specifically, we design useful model ensembles (GCE-Scorer) to extract the features of optical power with noise-tolerant training techniques integrated. We further implement a data-based aggregation algorithm (MaxMeanVoter) and a novel Transformer-based voter (TransVoter) to predict the topology. Compared with previous model-free methods, PT-Predictor is able to improve prediction accuracy by 23.1% in scenarios where data provided by telecom operators is sufficient, and by 14.8% in scenarios where data is temporarily insufficient. Besides, we identify a class of scenarios where PON topology does not follow a strict tree structure, and thus topology prediction cannot be effectively performed by relying on optical power data alone, which will be studied in our future work.

3.
Bioorg Med Chem ; 41: 116205, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34000509

RESUMEN

The ability to predict chemical structure from DNA sequence has to date been a necessary cornerstone of DNA-encoded library technology. DNA-encoded libraries (DELs) are typically screened by immobilized affinity selection and enriched library members are identified by counting the number of times an individual compound's sequence is observed in the resultant dataset. Those with high signal reads (DEL hits) are subsequently followed up through off-DNA synthesis of the predicted small molecule structures. However, hits followed-up in this manner often fail to translate to confirmed ligands. To address this low conversion rate of DEL hits to off-DNA ligands, we have developed an approach that eliminates the reliance on chemical structure prediction from DNA sequence. Here we describe our method of combining non-combinatorial resynthesis on-DNA following library procedures as a rapid means to assess the probable molecules attached to the DNA barcode. Furthermore, we apply our Bead-Assisted Ligand Isolation Mass Spectrometry (BALI-MS) technique to identify the true binders found within the mixtures of on-DNA synthesis products. Finally, we describe a Normalized Enrichment (NE) metric that allows for the quantitative assessment of affinity selection in these studies. We exemplify how this combined approach enables the identification of putative hit matter against a clinically relevant therapeutic target bisphosphoglycerate mutase, BPGM.


Asunto(s)
ADN/química , Descubrimiento de Drogas , Biblioteca de Genes , Espectrometría de Masas/métodos , Técnicas Químicas Combinatorias , Ligandos , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/química
4.
Proc Natl Acad Sci U S A ; 115(31): E7285-E7292, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30012605

RESUMEN

Proteolysis targeting chimeras (PROTACs) are heterobifunctional small molecules that simultaneously bind to a target protein and an E3 ligase, thereby leading to ubiquitination and subsequent degradation of the target. They present an exciting opportunity to modulate proteins in a manner independent of enzymatic or signaling activity. As such, they have recently emerged as an attractive mechanism to explore previously "undruggable" targets. Despite this interest, fundamental questions remain regarding the parameters most critical for achieving potency and selectivity. Here we employ a series of biochemical and cellular techniques to investigate requirements for efficient knockdown of Bruton's tyrosine kinase (BTK), a nonreceptor tyrosine kinase essential for B cell maturation. Members of an 11-compound PROTAC library were investigated for their ability to form binary and ternary complexes with BTK and cereblon (CRBN, an E3 ligase component). Results were extended to measure effects on BTK-CRBN cooperative interactions as well as in vitro and in vivo BTK degradation. Our data show that alleviation of steric clashes between BTK and CRBN by modulating PROTAC linker length within this chemical series allows potent BTK degradation in the absence of thermodynamic cooperativity.


Asunto(s)
Proteínas Tirosina Quinasas/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Agammaglobulinemia Tirosina Quinasa , Animales , Células Cultivadas , Ligandos , Poliubiquitina/metabolismo , Ratas , Termodinámica
5.
Bioconjug Chem ; 30(1): 200-209, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30543418

RESUMEN

A potent class of DNA-damaging agents, natural product bis-intercalator depsipeptides (NPBIDs), was evaluated as ultrapotent payloads for use in antibody-drug conjugates (ADCs). Detailed investigation of potency (both in cells and via biophysical characterization of DNA binding), chemical tractability, and in vitro and in vivo stability of the compounds in this class eliminated a number of potential candidates, greatly reducing the complexity and resources required for conjugate preparation and evaluation. This effort yielded a potent, stable, and efficacious ADC, PF-06888667, consisting of the bis-intercalator, SW-163D, conjugated via an N-acetyl-lysine-valine-citrulline- p-aminobenzyl alcohol- N, N-dimethylethylenediamine (AcLysValCit-PABC-DMAE) linker to an engineered variant of the anti-Her2 mAb, trastuzumab, catalyzed by transglutaminase.


Asunto(s)
Productos Biológicos/química , Depsipéptidos/química , Inmunoconjugados/química , Sustancias Intercalantes/química , Animales , Antineoplásicos Inmunológicos/química , Línea Celular Tumoral , ADN/química , Depsipéptidos/sangre , Depsipéptidos/farmacocinética , Equinomicina/química , Genes erbB-2 , Semivida , Xenoinjertos , Humanos , Ratones , Trastuzumab/química
6.
J Am Chem Soc ; 140(21): 6596-6603, 2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29668265

RESUMEN

CRISPR-Cas RNA-guided endonucleases hold great promise for disrupting or correcting genomic sequences through site-specific DNA cleavage and repair. However, the lack of methods for cell- and tissue-selective delivery currently limits both research and clinical uses of these enzymes. We report the design and in vitro evaluation of S. pyogenes Cas9 proteins harboring asialoglycoprotein receptor ligands (ASGPrL). In particular, we demonstrate that the resulting ribonucleoproteins (Cas9-ASGPrL RNP) can be engineered to be preferentially internalized into cells expressing the corresponding receptor on their surface. Uptake of such fluorescently labeled proteins in liver-derived cell lines HEPG2 (ASGPr+) and SKHEP (control; diminished ASGPr) was studied by live cell imaging and demonstrates increased accumulation of Cas9-ASGPrL RNP in HEPG2 cells as a result of effective ASGPr-mediated endocytosis. When uptake occurred in the presence of a peptide with endosomolytic properties, we observed receptor-facilitated and cell-type specific gene editing that did not rely on electroporation or the use of transfection reagents. Overall, these in vitro results validate the receptor-mediated delivery of genome-editing enzymes as an approach for cell-selective gene editing and provide a framework for future potential applications to hepatoselective gene editing in vivo.


Asunto(s)
Sistemas CRISPR-Cas , Endonucleasas/metabolismo , Edición Génica , Línea Celular Tumoral , Endonucleasas/genética , Células Hep G2 , Humanos , Estructura Molecular , Ingeniería de Proteínas
7.
J Biol Chem ; 289(52): 36018-30, 2014 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-25336647

RESUMEN

Cystathionine ß-synthase (CBS) is a key enzyme in sulfur metabolism, and its inherited deficiency causes homocystinuria. Mammalian CBS is modulated by the binding of S-adenosyl-l-methionine (AdoMet) to its regulatory domain, which activates its catalytic domain. To investigate the underlying mechanism, we performed x-ray crystallography, mutagenesis, and mass spectrometry (MS) on human CBS. The 1.7 Å structure of a AdoMet-bound CBS regulatory domain shows one AdoMet molecule per monomer, at the interface between two constituent modules (CBS-1, CBS-2). AdoMet binding is accompanied by a reorientation between the two modules, relative to the AdoMet-free basal state, to form interactions with AdoMet via residues verified by mutagenesis to be important for AdoMet binding (Phe(443), Asp(444), Gln(445), and Asp(538)) and for AdoMet-driven inter-domain communication (Phe(443), Asp(538)). The observed structural change is further supported by ion mobility MS, showing that as-purified CBS exists in two conformational populations, which converged to one in the presence of AdoMet. We therefore propose that AdoMet-induced conformational change alters the interface and arrangement between the catalytic and regulatory domains within the CBS oligomer, thereby increasing the accessibility of the enzyme active site for catalysis.


Asunto(s)
Cistationina betasintasa/química , S-Adenosilmetionina/química , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Unión Proteica , Estructura Secundaria de Proteína
8.
J Biol Chem ; 288(50): 35904-12, 2013 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-24187138

RESUMEN

AMP-activated protein kinase (AMPK) is a heterotrimeric enzyme that senses and governs changes in the cellular energy balance represented by concentrations of AMP, ADP, and ATP. Each of its three chains (α, ß, and γ) exists as either two or three subtypes, theoretically allowing up to 12 different forms of the complete enzyme. Tissue specificity in the distribution of AMPK subtypes is believed to underpin a range of biological functions for AMPK, a central regulator of metabolic function and response. It is of particular interest for drug discovery purposes to compare AMPK isoforms that are most prevalent in human liver and muscle with isoforms present in key preclinical species. To complement immunocapture/immunodetection methods, which for AMPK are challenged by sequence similarities and difficulties of obtaining accurate relative quantitation, AMPK was captured from lysates of a range of cells and tissues using the ActivX ATP probe. This chemical probe covalently attaches desthiobiotin to one or more conserved lysyl residues in the ATP-binding sites of protein kinases, including AMPK, while also labeling a wide range of ATP-utilizing proteins. Affinity-based recovery of labeled proteins followed by gel-based fractionation of the captured sample was followed by proteomic characterization of AMPK polypeptides. In agreement with transcript-based analysis and previous indications from immunodetection, the results indicated that the predominant AMPK heterotrimer in human liver is α1ß2γ1 but that dog and rat livers mainly contain the α1ß1γ1 and α2ß1γ1 forms, respectively. Differences were not detected between the AMPK profiles of normal and diabetic human liver tissues.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteómica , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/genética , Secuencia de Aminoácidos , Animales , Línea Celular , Perros , Células HEK293 , Hepatocitos/enzimología , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Músculo Esquelético/enzimología , Miocardio/enzimología , Especificidad de Órganos , Estructura Cuaternaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Especificidad de la Especie
9.
Anal Bioanal Chem ; 406(24): 5785-94, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25064599

RESUMEN

Cyclosporin is a family of neutral cyclic undecapeptides widely used for the prevention of organ transplant rejection and controlling viral infection. The equilibrium of conformations assumed by cyclosporin A in response to the solvent environment is thought to play a critical role in enabling good membrane penetration, which improves upon shielding the polarity of the molecule through forming intramolecular hydrogen bonds. However, the distribution of structures and their internal hydrogen bond geometries have not been elucidated thus far across the series of cyclosporins. Herein, we elucidate the conformational heterogeneity of cyclosporins using a set of analytical approaches including ion mobility mass spectrometry, hydrogen-deuterium exchange, and molecular dynamics simulation. Ion mobility measurements reveal a specific conformational distribution for each cyclosporin derivative in a structure-dependent manner. In general, we observe that the more compact conformer is associated with a greater frequency of intramolecular hydrogen bonds. Cyclosporin A is populated by structures with an extensive hydrogen bond network that is lacking in cyclosporin H, which is composed predominantly of a single compact conformation. The slower dynamics of cyclosporin H backbone is also consistent with the lack of hydrogen bonds. Furthermore, we find a strong correlation between the steric bulk of the side chain at position 2 of cyclosporin and the distribution of conformers due to differential accommodation of side chains within the macrocycle, and also report a wide range of conformational dynamics in solution.


Asunto(s)
Ciclosporinas/química , Enlace de Hidrógeno , Espectrometría de Masas , Conformación Molecular
10.
Protein Expr Purif ; 87(1): 27-34, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23069765

RESUMEN

The T helper cell-derived cytokine interleukin-17A (IL-17A) is a variably glycosylated disulfide-linked homodimer of 34-38 kDa. Its polypeptide monomer contains one canonical N-glycosylation site at Asn68, and human recombinant IL-17A was partly N-glycosylated when expressed in human kidney (HEK293) cells as a fusion protein with a melittin signal sequence and an N-terminal hexahistidine tag. Orbitrap mass analyses of the tryptic N-glycopeptide 63-69 indicated that the N-glycosylation was of the GalNAc-terminated type characteristic of cultured kidney cells. The mass spectrum of IL-17A monomer also included peaks shifted by +948 Da from the respective masses of unglycosylated and N-glycosylated polypeptides. These were caused by unpredicted partial O-glycosylation of Thr26 with the mucin-like structure -GalNAc(-NeuNAc)-Gal-NeuNAc. Identical O-glycosylation occurred in commercially sourced recombinant IL-17A also expressed in HEK293 cells but with a different N-terminal sequence. Therefore, the kidney host cell line not only imposed its characteristic pattern of N-glycosylation on recombinant IL-17A but additionally created an O-glycosylation not known to be present in the T cell-derived cytokine. Mammalian host cell lines for recombinant protein expression generally impose their characteristic patterns of N-glycosylation on the product, but this work exemplifies how a host may also unpredictably O-glycosylate a protein that is probably not normally O-glycosylated.


Asunto(s)
Interleucina-17/biosíntesis , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/biosíntesis , Secuencia de Aminoácidos , Linfocitos T CD4-Positivos/metabolismo , Conformación de Carbohidratos , Secuencia de Carbohidratos , Glicosilación , Células HEK293 , Humanos , Proteínas de Insectos/biosíntesis , Proteínas de Insectos/química , Interleucina-17/química , Meliteno/biosíntesis , Meliteno/química , Datos de Secuencia Molecular , Peso Molecular , Mapeo Peptídico , Señales de Clasificación de Proteína , Proteínas Recombinantes de Fusión/química , Espectrometría de Masas en Tándem
11.
Proc Natl Acad Sci U S A ; 107(16): 7275-80, 2010 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-20368460

RESUMEN

Fluorescent bisretinoids, such as A2E and all-trans-retinal dimer, form as a by-product of vitamin A cycling in retina and accumulate in retinal pigment epithelial (RPE) cells as lipofuscin pigments. These pigments are implicated in pathological mechanisms involved in several vision-threatening diseases including age-related macular degeneration. Efforts to understand damaging events initiated by these bisretinoids have revealed that photoexcitation of A2E by wavelengths in the visible spectrum leads to singlet oxygen production and photooxidation of A2E. Here we have employed liquid chromatography coupled to electrospray ionization mass spectrometry together with tandem mass spectrometry (MS/MS), to demonstrate that A2E also undergoes photooxidation-induced degradation and we have elucidated the structures of some of the aldehyde-bearing cleavage products. Studies in which A2E was incubated with a singlet oxygen generator yielded results consistent with a mechanism involving bisretinoid photocleavage at sites of singlet molecular oxygen addition. We provide evidence that one of the products released by A2E photodegradation is methylglyoxal, a low molecular weight reactive dicarbonyl with the capacity to form advanced glycation end products. Methylglyoxal is already known to be generated by carbohydrate and lipid oxidation; this is the first report of its production via bisretinoid photocleavage. It is significant that AGE-modified proteins are detected in deposits (drusen) that accumulate below RPE cells in vivo; drusen have been linked to age-related macular degeneration pathogenesis. Whereas various processes play a role in drusen formation, these findings are indicative of a contribution from lipofuscin photooxidation in RPE.


Asunto(s)
Degeneración Macular/terapia , Compuestos de Piridinio/química , Epitelio Pigmentado de la Retina/citología , Retinoides/química , Aldehídos/química , Carbohidratos/química , Humanos , Luz , Lípidos/química , Lipofuscina/química , Oxígeno/química , Fotoquímica/métodos , Piruvaldehído/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Vitamina A/química
12.
Biochemistry ; 51(10): 2065-77, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22352991

RESUMEN

Myeloperoxidase (MPO) is known to be inactivated and covalently modified by treatment with hydrogen peroxide and agents similar to 3-(2-ethoxypropyl)-2-thioxo-2,3-dihydro-1H-purin-6(9H)-one (1), a 254.08 Da derivative of 2-thioxanthine. Peptide mapping by liquid chromatography and mass spectrometry detected modification by 1 in a labile peptide-heme-peptide fragment of the enzyme, accompanied by a mass increase of 252.08 Da. The loss of two hydrogen atoms was consistent with mechanism-based oxidative coupling. Multistage mass spectrometry (MS(4)) of the modified fragment in an ion trap/Orbitrap spectrometer demonstrated that 1 was coupled directly to heme. Use of a 10 amu window delivered the full isotopic envelope of each precursor ion to collision-induced dissociation, preserving definitive isotopic profiles for iron-containing fragments through successive steps of multistage mass spectrometry. Iron isotope signatures and accurate mass measurements supported the structural assignments. Crystallographic analysis confirmed linkage between the methyl substituent of the heme pyrrole D ring and the sulfur atom of 1. The final orientation of 1 perpendicular to the plane of the heme ring suggested a mechanism consisting of two consecutive one-electron oxidations of 1 by MPO. Multistage mass spectrometry using stage-specific collision energies permits stepwise deconstruction of modifications of heme enzymes containing covalent links between the heme group and the polypeptide chain.


Asunto(s)
Hemo/química , Peroxidasa/química , Peroxidasa/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Cromatografía Liquida , Cristalografía por Rayos X , Humanos , Modelos Químicos , Modelos Moleculares , Datos de Secuencia Molecular , Peso Molecular , Neutrófilos/enzimología , Oxidación-Reducción , Fragmentos de Péptidos/química , Mapeo Peptídico , Espectrometría de Masas en Tándem
13.
J Am Chem Soc ; 133(50): 20536-45, 2011 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-22050378

RESUMEN

Multi-drug-resistant forms of the Gram-negative pathogen Acinetobacter baumannii are an emerging threat to human health and further complicate the general problem of treating serious bacterial infections. Meeting this challenge requires an improved understanding of the relationships between the structures of major therapeutic targets in this organism and the activity levels exhibited against it by different antibiotics. Here we report the first crystal structures of A. baumannii penicillin-binding proteins (PBPs) covalently inactivated by four ß-lactam antibiotics. We also relate the results to kinetic, biophysical, and computational data. The structure of the class A protein PBP1a was solved in apo form and for its covalent conjugates with benzyl penicillin, imipenem, aztreonam, and the siderophore-conjugated monocarbam MC-1. It included a novel domain genetically spliced into a surface loop of the transpeptidase domain that contains three conserved loops. Also reported here is the first high-resolution structure of the A. baumannii class B enzyme PBP3 in apo form. Comparison of this structure with that of MC-1-derivatized PBP3 of Pseudomonas aeruginosa identified differences between these orthologous proteins in A. baumannii and P. aeruginosa. Thermodynamic analyses indicated that desolvation effects in the PBP3 ligand-binding sites contributed significantly to the thermal stability of the enzyme-antibiotic covalent complexes. Across a significant range of values, they correlated well with results from studies of inactivation kinetics and the protein structures. The structural, biophysical, and computational data help rationalize differences in the functional performance of antibiotics against different protein targets and can be used to guide the design of future agents.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , beta-Lactamas/farmacología , Acinetobacter baumannii/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Cromatografía Liquida , Cristalización , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Datos de Secuencia Molecular
14.
J Am Chem Soc ; 133(34): 13311-3, 2011 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-21815669

RESUMEN

The pyrroloquinoline alkaloid family of natural products, which includes the immunosuppressant lymphostin, has long been postulated to arise from tryptophan. We now report the molecular basis of lymphostin biosynthesis in three marine Salinispora species that maintain conserved biosynthetic gene clusters harboring a hybrid nonribosomal peptide synthetase-polyketide synthase that is central to lymphostin assembly. Through a series of experiments involving gene mutations, stable isotope profiling, and natural product discovery, we report the assembly-line biosynthesis of lymphostin and nine new analogues that exhibit potent mTOR inhibitory activity.


Asunto(s)
Actinomycetales/metabolismo , Alcaloides/metabolismo , Alcaloides/farmacología , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Pirroles/metabolismo , Pirroles/farmacología , Quinolinas/metabolismo , Quinolinas/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Actinomycetales/química , Alcaloides/química , Inhibidores Enzimáticos/química , Pirroles/química , Quinolinas/química , Serina-Treonina Quinasas TOR/metabolismo
15.
Protein Expr Purif ; 76(1): 72-8, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20888915

RESUMEN

When the 34 kDa kinase domain of human spleen tyrosine kinase (Syk-KD) was expressed as a C-terminally His-tagged protein in baculovirus-infected Sf-21 insect cells, the purified protein included two forms that migrated slightly differently in SDS-polyacrylamide gel electrophoresis. Intact mass analysis and LC-MS/MS peptide mapping showed that the major and faster-migrating product had the intended amino-acid sequence and 0-6 phosphorylations. This material accounted for about 95% of the purified protein. The minor product was Syk-KD with a 26 amino-acid N-terminal extension. The result suggested the existence of an upstream alternative site for the initiation of translation, and this proved to be an ACG codon derived from the pBacPAK9 vector used to express Syk-KD. The ACG codon was preceded and followed by Kozak-type sequence elements (a purine in the -3 position and a G in the +4 position) that would have enhanced the viability of initiation at ACG. The initiating amino-acid residue was Met for both minor and major products, and both forms of the protein were α-N-acetylated. For the minor product, protein intact mass analysis and peptide mapping both gave results in agreement with the sequence predicted from the DNA. A similar result with the same underlying cause was obtained with insect cell expression of full-length Syk. It appears that similar results are possible whenever this vector is used.


Asunto(s)
Proteínas Recombinantes de Fusión/biosíntesis , Spodoptera/metabolismo , Secuencia de Aminoácidos , Animales , Baculoviridae/genética , Secuencia de Bases , Línea Celular , Codón Iniciador , Vectores Genéticos , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Datos de Secuencia Molecular , Mapeo Peptídico , Biosíntesis de Proteínas , Proteínas Tirosina Quinasas/biosíntesis , Proteínas Tirosina Quinasas/química , Proteínas Recombinantes de Fusión/química , Análisis de Secuencia de Proteína , Spodoptera/genética , Quinasa Syk
16.
Proc Natl Acad Sci U S A ; 105(1): 33-8, 2008 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-18162540

RESUMEN

Rapamycin is an immunosuppressive immunophilin ligand reported as having neurotrophic activity. We show that modification of rapamycin at the mammalian target of rapamycin (mTOR) binding region yields immunophilin ligands, WYE-592 and ILS-920, with potent neurotrophic activities in cortical neuronal cultures, efficacy in a rodent model for ischemic stroke, and significantly reduced immunosuppressive activity. Surprisingly, both compounds showed higher binding selectivity for FKBP52 versus FKBP12, in contrast to previously reported immunophilin ligands. Affinity purification revealed two key binding proteins, the immunophilin FKBP52 and the beta1-subunit of L-type voltage-dependent Ca(2+) channels (CACNB1). Electrophysiological analysis indicated that both compounds can inhibit L-type Ca(2+) channels in rat hippocampal neurons and F-11 dorsal root ganglia (DRG)/neuroblastoma cells. We propose that these immunophilin ligands can protect neurons from Ca(2+)-induced cell death by modulating Ca(2+) channels and promote neurite outgrowth via FKBP52 binding.


Asunto(s)
Canales de Calcio/química , Sirolimus/química , Proteínas de Unión a Tacrolimus/química , Animales , Calcio/metabolismo , Electrofisiología/métodos , Humanos , Inmunofilinas/metabolismo , Inmunosupresores/farmacología , Ligandos , Modelos Químicos , Neuritas/metabolismo , Neuroblastoma/metabolismo , Neuronas/metabolismo , Técnicas de Placa-Clamp , Unión Proteica , Ratas , Accidente Cerebrovascular/metabolismo
17.
J Med Chem ; 64(1): 326-342, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33356244

RESUMEN

Sickle cell disease (SCD) is a genetic disorder caused by a single point mutation (ß6 Glu → Val) on the ß-chain of adult hemoglobin (HbA) that results in sickled hemoglobin (HbS). In the deoxygenated state, polymerization of HbS leads to sickling of red blood cells (RBC). Several downstream consequences of polymerization and RBC sickling include vaso-occlusion, hemolytic anemia, and stroke. We report the design of a noncovalent modulator of HbS, clinical candidate PF-07059013 (23). The seminal hit molecule was discovered by virtual screening and confirmed through a series of biochemical and biophysical studies. After a significant optimization effort, we arrived at 23, a compound that specifically binds to Hb with nanomolar affinity and displays strong partitioning into RBCs. In a 2-week multiple dose study using Townes SCD mice, 23 showed a 37.8% (±9.0%) reduction in sickling compared to vehicle treated mice. 23 (PF-07059013) has advanced to phase 1 clinical trials.


Asunto(s)
Anemia de Células Falciformes/tratamiento farmacológico , Hemoglobina A/efectos de los fármacos , Hemoglobina Falciforme/efectos de los fármacos , Quinolinas/farmacología , Quinolinas/uso terapéutico , Animales , Eritrocitos/metabolismo , Ratones , Oxígeno/metabolismo , Quinolinas/química
18.
J Org Chem ; 74(16): 5902-8, 2009 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-20560563

RESUMEN

Three new sulfated sterol dimers, fibrosterol sulfates A-C (1-3), have been isolated from the sponge Lissodendoryx (Acanthodoryx) fibrosa, collected in the Philippines. The structures were assigned on the basis of extensive 1D and 2D NMR studies as well as analysis by HRESIMS. Compounds 1 and 2 inhibited PKCzeta with IC(50) values of 16.4 and 5.6 microM, respectively.


Asunto(s)
Dimerización , Poríferos/química , Proteína Quinasa C/antagonistas & inhibidores , Esteroles/química , Esteroles/farmacología , Sulfatos/química , Animales , Mezclas Complejas/química , Evaluación Preclínica de Medicamentos , Concentración 50 Inhibidora , Espectroscopía de Resonancia Magnética , Metanol/química , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/aislamiento & purificación , Inhibidores de Proteínas Quinasas/farmacología , Esteroles/aislamiento & purificación
19.
Bioorg Med Chem ; 17(6): 2154-61, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19028101

RESUMEN

Two natural products, diazepinomicin (1) and dioxapyrrolomycin (2), containing stable isotopic labels of (15)N or deuterium, were used to demonstrate the utility of Fourier transform ion cyclotron resonance mass spectrometry for probing natural product biosynthetic pathways. The isotopic fine structures of significant ions were resolved and subsequently assigned elemental compositions on the basis of highly accurate mass measurements. In most instances the mass measurement accuracy is less than one part per million (ppm), which typically makes the identification of stable-isotope labeling unambiguous. In the case of the mono-(15)N-labeled diazepinomicin (1) derived from labeled tryptophan, tandem mass spectrometry located this (15)N label at the non-amide nitrogen. Through the use of exceptionally high mass resolving power of over 125,000, the isotopic fine structure of the molecular ion cluster of 1 was revealed. Separation of the (15)N(2) peak from the isobaric (13)C(15)N peak, both having similar abundances, demonstrated the presence of a minor amount of doubly (15)N-labeled diazepinomicin (1). Tandem mass spectrometry amplified this isotopic fine structure (Deltam=6.32 mDa) from mDa to 1 Da scale thereby allowing more detailed scrutiny of labeling content and location. Tandem mass spectrometry was also used to assign the location of deuterium labeling in two deuterium-labeled diazepinomicin (1) samples. In one case three deuterium atoms were incorporated into the dibenzodiazepine core; while in the other a mono-D label was mainly incorporated into the farnesyl side chain. The specificity of (15)N-labeling in dioxapyrrolomycin (2) and the proportion of the (15)N-label contained in the nitro group were determined from the measurement of the relative abundance of the (14)NO(2)(1-) and (15)NO(2)(1-) fragment ions.


Asunto(s)
Productos Biológicos/biosíntesis , Ciclotrones , Dibenzazepinas/metabolismo , Espectrometría de Masas en Tándem/métodos , Deuterio , Fermentación , Análisis de Fourier , Pirroles/metabolismo
20.
J Nat Prod ; 72(3): 496-9, 2009 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-19199816

RESUMEN

The effectiveness of precursor-directed biosynthesis to generate diazepinomicin (1) analogues with varied ring-A substitutents was investigated by feeding commercially available, potential ring-A precursors such as fluorinated tryptophans, halogenated anthranilates, and various substituted indoles into growing actinomycete culture DPJ15 (genus Micromonospora). Two new monofluorinated diazepinomicin analogues (2 and 3) were identified and characterized by spectroscopic methods. Both derivatives showed modest antibacterial activity against the Gram-positive coccus Staphylococcus aureus with MIC values in the range 8-32 microg/mL.


Asunto(s)
Dibenzazepinas/aislamiento & purificación , Hidrocarburos Fluorados/aislamiento & purificación , Indoles/aislamiento & purificación , Micromonospora/química , Dibenzazepinas/química , Dibenzazepinas/metabolismo , Dibenzazepinas/farmacología , Hidrocarburos Fluorados/química , Hidrocarburos Fluorados/metabolismo , Hidrocarburos Fluorados/farmacología , Indoles/química , Indoles/metabolismo , Indoles/farmacología , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Staphylococcus aureus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA