Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(14): 9801-9810, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38551407

RESUMEN

The sequence-controlled assembly of nucleic acids and amino acids into well-defined superstructures constitutes one of the most revolutionary technologies in modern science. The elaboration of such superstructures from carbohydrates, however, remains elusive and largely unexplored on account of their intrinsic constitutional and configurational complexity, not to mention their inherent conformational flexibility. Here, we report the bottom-up assembly of two classes of hierarchical superstructures that are formed from a highly flexible cyclo-oligosaccharide─namely, cyclofructan-6 (CF-6). The formation of coordinative bonds between the oxygen atoms of CF-6 and alkali metal cations (i) locks a myriad of flexible conformations of CF-6 into a few rigid conformations, (ii) bridges adjacent CF-6 ligands, and (iii) gives rise to the multiple-level assembly of three extended frameworks. The hierarchical superstructures present in these frameworks have been shown to modulate their nanomechanical properties. This research highlights the unique opportunities of constructing convoluted superstructures from carbohydrates and should encourage future endeavors in this underinvestigated field of science.


Asunto(s)
Carbohidratos , Metales , Metales/química , Carbohidratos/química , Conformación Molecular , Aminoácidos
2.
J Am Chem Soc ; 146(31): 21689-21699, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39073091

RESUMEN

In reticular chemistry, molecular building blocks are designed to create crystalline open frameworks. A key principle of reticular chemistry is that the most symmetrical networks are the likely outcomes of reactions, particularly when highly symmetrical building blocks are involved. The strategy of synthesizing low-dimensional networks aims to reduce explicitly the symmetry of the molecular building blocks. Here we report the spontaneous formation of hydrogen-bonded fibrous structures from trigonal prismatic building blocks, which were designed to form three-dimensional crystalline networks on account of their highly symmetrical structures. Utilizing different microscopic and spectroscopic techniques, we identify the structures at the early stages of the assembly process in order to and understand the growth mechanism. The symmetrical molecular building blocks are incorporated preferentially in the longitudinal direction, giving rise to anisotropic hydrogen-bonded porous organic nanotubes. Entropy-driven anisotropic growth provides micrometer-scale unidirectional nanotubes with high porosity. By combining experimental evidence and theoretical modeling, we have obtained a deep understanding of the nucleation and growth processes. Our findings offer fundamental insight into the molecular design of tubular structures. The nanotubes evolve further in the transverse directions to provide extended higher-order fibrous structures [nano- and microfibers], ultimately leading to large-scale interconnected hydrogen-bonded fiber-like structures with twists and turns. Our work provides fundamental understanding and paves the way for innovative molecular designs in low-dimensional networks.

3.
Angew Chem Int Ed Engl ; : e202413805, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140900

RESUMEN

Organic photothermal conversion materials hold immense promise for various applications owing to their structural flexibility. Recent research has focused on enhancing near-infrared (NIR) absorption and mitigating radiative transition processes. In this study, we have developed a viable approach to the design of photothermal conversion materials through the construction of ternary organic cocrystals, by introducing a third component as a molecular blocker and motion unit into a binary donor-acceptor system. Superstructural and photophysical properties of the ternary cocrystals were characterized using various spectroscopic techniques. The role of the molecular blocker in radical stabilization and photothermal conversion were demonstrated. Intriguingly, the motions of the entire pyrene molecules in the cocrystal have been observed by variable temperature single-crystal X-ray diffraction results. The excellent performance of ternary cocrystal as a photothermal material was validated through efficient NIR-II photothermal and solar-driven water evaporation experiments. The efficiency of water evaporation reached 88.7 %, with a corresponding evaporation rate of 1.29 kg m-2 h-1, representing excellent performance among pure organic small molecular photothermal conversion materials. Our research underscores the introduction of molecular blockers and motion units to stabilize radicals and produce outstanding photothermal conversion materials, offering new pathways for developing efficient and stable photothermal conversion materials.

4.
Chem Sci ; 15(5): 1692-1699, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38303953

RESUMEN

On account of the scarcity of molecules with a satisfactory second near-infrared (NIR-II) response, the design of high-performance organic NIR photothermal materials has been limited. Herein, we investigate a cocrystal incorporating tetrathiafulvalene (TTF) and tetrachloroperylene dianhydride (TCPDA) components. A stable radical was generated through charge transfer from TTF to TCPDA, which exhibits strong and wide-ranging NIR-II absorption. The metal-free TTF-TCPDA cocrystal in this research shows high photothermal conversion capability under 1064 nm laser irradiation and clear photothermal imaging. The remarkable conversion ability-which is a result of twisted components in the cocrystal-has been demonstrated by analyses of single crystal X-ray diffraction, photoluminescence and femtosecond transient absorption spectroscopy as well as theoretical calculations. We have discovered that space charge separation and the ordered lattice in the TTF-TCPDA cocrystal suppress the radiative decay, while simultaneously strong intermolecular charge transfer enhances the non-radiative decay. The twisted TCPDA component induces rapid charge recombination, while the distorted configuration in TTF-TCPDA favors an internal non-radiative pathway. This research has provided a comprehensive understanding of the photothermal conversion mechanism and opened a new way for the design of advanced organic NIR-II photothermal materials.

5.
Chem Sci ; 15(30): 11825-11836, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39092096

RESUMEN

Harnessing flexible host cavities opens opportunities for the design of novel supramolecular architectures that accommodate nanosized guests. This research examines unprecedented gas-phase structures of Keggin-type polyoxometalate PW12O40 3- (WPOM) and cyclodextrins (X-CD, X = α, ß, γ, δ, ε, ζ) including previously unexplored large, flexible CDs. Using ion mobility spectrometry coupled to mass spectrometry (IM-MS) in conjunction with molecular dynamics (MD) simulations, we provide first insights into the binding modes between WPOM and larger CD hosts as isolated structures. Notably, γ-CD forms two distinct structures with WPOM through binding to its primary and secondary faces. We also demonstrate that ε-CD forms a deep inclusion complex, which encapsulates WPOM within its annular inner cavity. In contrast, ζ-CD adopts a saddle-like conformation in its complex with WPOM, which resembles its free form in solution. More intriguingly, the gas-phase CD-WPOM structures are highly correlated with their counterparts in solution as characterized by nuclear magnetic resonance (NMR) spectroscopy. The strong correlation between the gas- and solution phase structures of CD-WPOM complexes highlight the power of gas-phase IM-MS for the structural characterization of supramolecular complexes with nanosized guests, which may be difficult to examine using conventional approaches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA