Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell ; 181(2): 424-441.e21, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32234521

RESUMEN

KRAS mutant pancreatic ductal adenocarcinoma (PDAC) is characterized by a desmoplastic response that promotes hypovascularity, immunosuppression, and resistance to chemo- and immunotherapies. We show that a combination of MEK and CDK4/6 inhibitors that target KRAS-directed oncogenic signaling can suppress PDAC proliferation through induction of retinoblastoma (RB) protein-mediated senescence. In preclinical mouse models of PDAC, this senescence-inducing therapy produces a senescence-associated secretory phenotype (SASP) that includes pro-angiogenic factors that promote tumor vascularization, which in turn enhances drug delivery and efficacy of cytotoxic gemcitabine chemotherapy. In addition, SASP-mediated endothelial cell activation stimulates the accumulation of CD8+ T cells into otherwise immunologically "cold" tumors, sensitizing tumors to PD-1 checkpoint blockade. Therefore, in PDAC models, therapy-induced senescence can establish emergent susceptibilities to otherwise ineffective chemo- and immunotherapies through SASP-dependent effects on the tumor vasculature and immune system.


Asunto(s)
Envejecimiento/fisiología , Carcinoma Ductal Pancreático/patología , Remodelación Vascular/fisiología , Animales , Linfocitos T CD8-positivos/inmunología , Carcinoma Ductal Pancreático/microbiología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Genes ras/genética , Humanos , Inmunoterapia/métodos , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Neoplasias Pancreáticas/patología , Proteína de Retinoblastoma/inmunología , Transducción de Señal/genética , Microambiente Tumoral , Remodelación Vascular/genética
3.
Invest New Drugs ; 36(4): 590-600, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29297149

RESUMEN

Oxidative stress and cellular response mechanisms such as NRF2-mediated antioxidant responses play differential roles in healthy and diseased cells. Constant generation and elimination of high levels of reactive oxygen species is a hallmark of many cancer cell types; this phenomenon is not observed during steady state of healthy cells. Manipulation of NRF2 transcriptional activity and the cellular redox homeostasis therefore has potential to be therapeutically exploitable for cancer therapy by preferentially targeting cancer cells for induction of oxidative stress. We found that the NRF2 inhibitor brusatol triggered increased oxidative stress while compromising viability and proliferation of multiple myeloma cells. Using a repurposing approach we discovered that the Cdc7/CDK9 inhibitor PHA-767491 is also a potent inhibitor of NRF2 transcriptional activity. The molecule was identified by high throughput screening of a library of about 5900 drug-like molecules. Screening assays included two cell-based assays using HepG2 hepatocellular carcinoma cells: a) A NRF2 nuclear translocation assay, and b) A NRF2 luciferase reporter assay. Validation assays were performed in multiple myeloma cells and included detection of mitochondrial superoxide levels and MTS assays. We found that PHA-767491 treatment of multiple myeloma cells was associated with inhibition of nuclear translocation of NRF2, increased mitochondrial superoxide levels and inhibition of cell growth. Our findings suggest that PHA-767491 is a promising drug candidate for cancer therapy with NRF2 inhibitory potency contributing to its anti-cancer properties.


Asunto(s)
Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Oxidación-Reducción/efectos de los fármacos , Piperidonas/farmacología , Pirroles/farmacología , Transducción de Señal/efectos de los fármacos , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Reposicionamiento de Medicamentos/métodos , Células Hep G2 , Humanos , Estrés Oxidativo/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
4.
Elife ; 122023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37261974

RESUMEN

Mutations in genes encoding components of chromatin modifying and remodeling complexes are among the most frequently observed somatic events in human cancers. For example, missense and nonsense mutations targeting the mixed lineage leukemia family member 3 (MLL3, encoded by KMT2C) histone methyltransferase occur in a range of solid tumors, and heterozygous deletions encompassing KMT2C occur in a subset of aggressive leukemias. Although MLL3 loss can promote tumorigenesis in mice, the molecular targets and biological processes by which MLL3 suppresses tumorigenesis remain poorly characterized. Here, we combined genetic, epigenomic, and animal modeling approaches to demonstrate that one of the mechanisms by which MLL3 links chromatin remodeling to tumor suppression is by co-activating the Cdkn2a tumor suppressor locus. Disruption of Kmt2c cooperates with Myc overexpression in the development of murine hepatocellular carcinoma (HCC), in which MLL3 binding to the Cdkn2a locus is blunted, resulting in reduced H3K4 methylation and low expression levels of the locus-encoded tumor suppressors p16/Ink4a and p19/Arf. Conversely, elevated KMT2C expression increases its binding to the CDKN2A locus and co-activates gene transcription. Endogenous Kmt2c restoration reverses these chromatin and transcriptional effects and triggers Ink4a/Arf-dependent apoptosis. Underscoring the human relevance of this epistasis, we found that genomic alterations in KMT2C and CDKN2A were associated with similar transcriptional profiles in human HCC samples. These results collectively point to a new mechanism for disrupting CDKN2A activity during cancer development and, in doing so, link MLL3 to an established tumor suppressor network.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animales , Ratones , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Proteína p14ARF Supresora de Tumor/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Cromatina , Carcinogénesis
5.
Nat Commun ; 13(1): 5676, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36167829

RESUMEN

To identify drivers of sensitivity and resistance to Protein Arginine Methyltransferase 5 (PRMT5) inhibition, we perform a genome-wide CRISPR/Cas9 screen. We identify TP53 and RNA-binding protein MUSASHI2 (MSI2) as the top-ranked sensitizer and driver of resistance to specific PRMT5i, GSK-591, respectively. TP53 deletion and TP53R248W mutation are biomarkers of resistance to GSK-591. PRMT5 expression correlates with MSI2 expression in lymphoma patients. MSI2 depletion and pharmacological inhibition using Ro 08-2750 (Ro) both synergize with GSK-591 to reduce cell growth. Ro reduces MSI2 binding to its global targets and dual treatment of Ro and PRMT5 inhibitors result in synergistic gene expression changes including cell cycle, P53 and MYC signatures. Dual MSI2 and PRMT5 inhibition further blocks c-MYC and BCL-2 translation. BCL-2 depletion or inhibition with venetoclax synergizes with a PRMT5 inhibitor by inducing reduced cell growth and apoptosis. Thus, we propose a therapeutic strategy in lymphoma that combines PRMT5 with MSI2 or BCL-2 inhibition.


Asunto(s)
Linfoma de Células B , Linfoma , Línea Celular Tumoral , Humanos , Linfoma/genética , Mutación , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteína p53 Supresora de Tumor/genética
6.
Dev Cell ; 45(5): 580-594.e7, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29804876

RESUMEN

Patterning of vertebrate melanophores is essential for mate selection and protection from UV-induced damage. Patterning can be influenced by circulating long-range factors, such as hormones, but it is unclear how their activity is controlled in recipient cells to prevent excesses in cell number and migration. The zebrafish wanderlust mutant harbors a mutation in the sheddase bace2 and exhibits hyperdendritic and hyperproliferative melanophores that localize to aberrant sites. We performed a chemical screen to identify suppressors of the wanderlust phenotype and found that inhibition of insulin/PI3Kγ/mTOR signaling rescues the defect. In normal physiology, Bace2 cleaves the insulin receptor, whereas its loss results in hyperactive insulin/PI3K/mTOR signaling. Insulin B, an isoform enriched in the head, drives the melanophore defect. These results suggest that insulin signaling is negatively regulated by melanophore-specific expression of a sheddase, highlighting how long-distance factors can be regulated in a cell-type-specific manner.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Tipificación del Cuerpo , Insulina/metabolismo , Melanóforos/fisiología , Pigmentación , Proteínas de Pez Cebra/metabolismo , Pez Cebra/fisiología , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Movimiento Celular/fisiología , Embrión no Mamífero/citología , Embrión no Mamífero/fisiología , Regulación del Desarrollo de la Expresión Génica , Insulina/genética , Melanóforos/citología , Mutación , Fenotipo , Fosfatidilinositol 3-Quinasas , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
7.
Science ; 362(6421): 1416-1422, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30573629

RESUMEN

Molecularly targeted therapies aim to obstruct cell autonomous programs required for tumor growth. We show that mitogen-activated protein kinase (MAPK) and cyclin-dependent kinase 4/6 inhibitors act in combination to suppress the proliferation of KRAS-mutant lung cancer cells while simultaneously provoking a natural killer (NK) cell surveillance program leading to tumor cell death. The drug combination, but neither agent alone, promotes retinoblastoma (RB) protein-mediated cellular senescence and activation of the immunomodulatory senescence-associated secretory phenotype (SASP). SASP components tumor necrosis factor-α and intercellular adhesion molecule-1 are required for NK cell surveillance of drug-treated tumor cells, which contributes to tumor regressions and prolonged survival in a KRAS-mutant lung cancer mouse model. Therefore, molecularly targeted agents capable of inducing senescence can produce tumor control through non-cell autonomous mechanisms involving NK cell surveillance.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Citostáticos/uso terapéutico , Citotoxicidad Inmunológica , Vigilancia Inmunológica , Células Asesinas Naturales/inmunología , Neoplasias Pulmonares/tratamiento farmacológico , Aminopiridinas/farmacología , Aminopiridinas/uso terapéutico , Animales , Apoptosis , Bencimidazoles/farmacología , Bencimidazoles/uso terapéutico , Senescencia Celular , Citostáticos/farmacología , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos , Terapia Molecular Dirigida , Mutación , Piperazinas/farmacología , Piperazinas/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/genética , Purinas/farmacología , Purinas/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Piridonas/farmacología , Piridonas/uso terapéutico , Pirimidinonas/farmacología , Pirimidinonas/uso terapéutico , Proteína de Retinoblastoma/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
8.
J Neurosci Methods ; 163(2): 310-20, 2007 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-17490751

RESUMEN

Immunophilins are protein receptors for the immunosuppressant drugs FK506, cyclosporin A (CsA), and rapamycin. Two categories of immunophilins are the FK506-binding proteins (FKBPs), which bind to FK506, rapamycin, and CCI-779 and the cyclophilins, which bind to CsA. Reports have shown that immunophilins are expressed in the brain and spinal cord, are 10-100-fold higher in CNS tissue than immune tissue, and their expression is increased following nerve injury, suggesting that their chemical ligands may have therapeutic utility in the treatment of neurodegenerative diseases. In this study, we report the development and utility of a rapid neurofilament (NF) enzyme-linked immunosorbent assay (ELISA) to quantify neuronal survival and the Cellomics ArrayScan platform to quantify neurite outgrowth following treatment with immunophilin ligands. Cultured neurons or F-11 cells were treated with various immunophilin ligands for 72 or 96h and their promotion of neuronal survival and neurite outgrowth were determined. The results showed that all immunophilin ligands, in a concentration-dependent manner, significantly increased neuronal survival and neurite outgrowth, when compared to control cultures. Taken together, these results demonstrate the potential utility of the neurofilament ELISA and Cellomics ArrayScan platform to efficiently quantify neurotrophic effects of immunophilin ligands on cultured neurons and cell lines.


Asunto(s)
Bioensayo/métodos , Ensayo de Inmunoadsorción Enzimática/métodos , Inmunofilinas/efectos de los fármacos , Neuritas/efectos de los fármacos , Proteínas de Neurofilamentos/análisis , Proteínas de Neurofilamentos/efectos de los fármacos , Animales , Bioensayo/instrumentación , Recuento de Células/instrumentación , Recuento de Células/métodos , Técnicas de Cultivo de Célula/métodos , Aumento de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Inmunofilinas/metabolismo , Inmunosupresores/farmacología , Ligandos , Neuritas/metabolismo , Neuritas/ultraestructura , Óptica y Fotónica/instrumentación , Proteínas Quinasas/efectos de los fármacos , Proteínas Quinasas/metabolismo , Ratas , Ratas Sprague-Dawley , Serina-Treonina Quinasas TOR
9.
Nat Commun ; 8: 14343, 2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-28181494

RESUMEN

Cellular plasticity is a state in which cancer cells exist along a reversible phenotypic spectrum, and underlies key traits such as drug resistance and metastasis. Melanoma plasticity is linked to phenotype switching, where the microenvironment induces switches between invasive/MITFLO versus proliferative/MITFHI states. Since MITF also induces pigmentation, we hypothesize that macrometastatic success should be favoured by microenvironments that induce a MITFHI/differentiated/proliferative state. Zebrafish imaging demonstrates that after extravasation, melanoma cells become pigmented and enact a gene expression program of melanocyte differentiation. We screened for microenvironmental factors leading to phenotype switching, and find that EDN3 induces a state that is both proliferative and differentiated. CRISPR-mediated inactivation of EDN3, or its synthetic enzyme ECE2, from the microenvironment abrogates phenotype switching and increases animal survival. These results demonstrate that after metastatic dissemination, the microenvironment provides signals to promote phenotype switching and provide proof that targeting tumour cell plasticity is a viable therapeutic opportunity.


Asunto(s)
Plasticidad de la Célula , Melanoma/patología , Microambiente Tumoral , Animales , Sistemas CRISPR-Cas/genética , Diferenciación Celular/genética , Plasticidad de la Célula/genética , Proliferación Celular/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Melanoma/genética , Modelos Biológicos , Metástasis de la Neoplasia , Fenotipo , Microambiente Tumoral/genética , Pez Cebra , Proteínas de Pez Cebra/metabolismo
10.
JCI Insight ; 2(6): e90196, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28352655

RESUMEN

Diffuse large B cell lymphoma (DLBCL) frequently harbors genetic alterations that activate the B cell receptor (BCR) and TLR pathways, which converge to activate NF-κB. While selective inhibition of BTK with ibrutinib causes clinical responses in relapsed DLBCL patients, most responses are partial and of a short duration. Here, we demonstrated that MyD88 silencing enhanced ibrutinib efficacy in DLBCL cells harboring MyD88 L265P mutations. Chemical downregulation of MyD88 expression with HDAC inhibitors also synergized with ibrutinib. We demonstrate that HDAC inhibitor regulation of MyD88 expression is mediated by STAT3. In turn, STAT3 silencing caused a decrease in MyD88 mRNA and protein levels, and enhanced the ibrutinib antilymphoma effect in MyD88 mutant DLBCL cells. Induced mutations in the STAT3 binding site in the MyD88 promotor region was associated with a decrease in MyD88 transcriptional activity. We also demonstrate that treatment with the HDAC inhibitor panobinostat decreased phosphorylated STAT3 binding to the MyD88 promotor. Accordingly, combined treatment with panobinostat and ibrutinib resulted in enhanced inhibition of NF-κB activity and caused regression of DLBCL xenografts. Our data provide a mechanistic rationale for combining HDAC inhibitors and ibrutinib for the treatment of DLBCL.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Mutación , Factor 88 de Diferenciación Mieloide/genética , Panobinostat/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Adenina/análogos & derivados , Animales , Línea Celular Tumoral , Sinergismo Farmacológico , Humanos , Ratones , Piperidinas , Regiones Promotoras Genéticas , Factor de Transcripción STAT3/metabolismo , Transcripción Genética/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
11.
J Biomol Screen ; 11(3): 296-302, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16699130

RESUMEN

Caspase activation is a component of a number of neurodegenerative disorders, including stroke. In this study, the authors describe a multiplexed assay for caspase 3 activation, nuclear condensation, and cell viability in a neuronal precursor cell line Ntera-2, injured with staurosporine and etoposide. Using a high-content screening approach, cells were identified by staining with the nuclear stain Hoechst 33342; cell viability was measured by staining cells with YoPro-1, which is taken up by damaged cells but excluded from healthy cells; and caspase 3/7 activation was detected using the cell-permeable probe PhiPhi-Lux, which becomes fluorescent when cleaved by active caspase 3 or 7. These 3 dyes were detected simultaneously using a 4-band pass filter set on a Cellomics Array scan. The authors used peptide-fmk inhibitors selective for a variety of caspases, demonstrating that the injury is mediated primarily through caspase 3 or 7, although other caspases or related proteases may play a minor role. The general caspase inhibitor zVAD-fmkwas able to block cell death and caspase activation with the highest potency. The caspase 3 selective inhibitor DEVD-fmkwas almost as potent as zVAD-fmk; other peptide caspase inhibitors displayed only modest inhibition of cell death. This assay was also used as a high-content screening tool for the evaluation of novel caspase 3 inhibitors for the potential treatment of degenerative disorders.


Asunto(s)
Apoptosis , Caspasas/metabolismo , Neuronas/enzimología , Caspasa 3 , Inhibidores de Caspasas , Línea Celular , Inhibidores de Cisteína Proteinasa/farmacología , Activación Enzimática , Neuronas/efectos de los fármacos , Neuronas/patología
12.
Brain Res ; 1077(1): 16-23, 2006 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-16487495

RESUMEN

PACAP is a peptide with neuroprotective activity, which induces adenylate cyclase and protein kinase A (PKA) activity. PACAP has also been shown to induce neurite outgrowth in PC12 cells and dorsal root ganglion (DRG) neurons. Here, we report that exogenous PACAP38 promotes neurite outgrowth in the F11 neuroblastoma/dorsal DRG hybrid cell line. Using an automated microscopy system, we show that PACAP38 induces a 170-fold increase in neurite length, with an EC50 of 3.1 nM, compared to 3.7 microM for forskolin and 143.4 microM for dibutyril cyclic AMP (dbcAMP). PACAP38 induced a 4-fold increase in the level of phosphorylation of cAMP-responsive element binding protein (CREB) in F11 cells with an EC50 of 130 pM. In contrast a peptide related to PACAP, vasoactive intestinal peptide (VIP) failed to induce CREB phosphorylation or neurite outgrowth in F11 cells. Addition of the nonselective phosphodiesterase inhibitor, isobutyl methylxanthine (IBMX) increased the potency of PACAP at inducing neurite outgrowth by ten-fold. The PKA inhibitor, H89, was a potent inhibitor of PACAP38-induced neurite outgrowth. The delta-opioid receptor agonist, SNC 80, did not inhibit PACAP-induced neurogenesis even though it did reduce CREB phosphorylation. In contrast to previous studies in PC12 cells, PACAP38 failed to show MEK1 activation in F11 cells. PACAP is upregulated in DRG neurons as a result of injury, and F11 cells provide an easily accessible in vitro model for understanding mechanisms underlying PACAP differentiation and neurogenesis.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Neuritas/fisiología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/fisiología , Transducción de Señal/fisiología , 1-Metil-3-Isobutilxantina , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Ganglios Espinales/citología , Inmunohistoquímica , Ratones , Neuritas/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Inhibidores de Fosfodiesterasa/farmacología , Fosforilación , Ratas , Sistemas de Mensajero Secundario/efectos de los fármacos , Sistemas de Mensajero Secundario/fisiología , Transducción de Señal/efectos de los fármacos , Péptido Intestinal Vasoactivo/fisiología
13.
Cancer Discov ; 6(6): 612-29, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27099234

RESUMEN

UNLABELLED: Oncogene-induced senescence is a potent barrier to tumorigenesis that limits cellular expansion following certain oncogenic events. Senescent cells display a repressive chromatin configuration thought to stably silence proliferation-promoting genes while simultaneously activating an unusual form of immune surveillance involving a secretory program referred to as the senescence-associated secretory phenotype (SASP). Here, we demonstrate that senescence also involves a global remodeling of the enhancer landscape with recruitment of the chromatin reader BRD4 to newly activated super-enhancers adjacent to key SASP genes. Transcriptional profiling and functional studies indicate that BRD4 is required for the SASP and downstream paracrine signaling. Consequently, BRD4 inhibition disrupts immune cell-mediated targeting and elimination of premalignant senescent cells in vitro and in vivo Our results identify a critical role for BRD4-bound super-enhancers in senescence immune surveillance and in the proper execution of a tumor-suppressive program. SIGNIFICANCE: This study reveals how cells undergoing oncogene-induced senescence acquire a distinctive enhancer landscape that includes formation of super-enhancers adjacent to immune-modulatory genes required for paracrine immune activation. This process links BRD4 and super-enhancers to a tumor-suppressive immune surveillance program that can be disrupted by small molecule inhibitors of the bromo and extra terminal domain family of proteins. Cancer Discov; 6(6); 612-29. ©2016 AACR.See related commentary by Vizioli and Adams, p. 576This article is highlighted in the In This Issue feature, p. 561.


Asunto(s)
Senescencia Celular/genética , Ensamble y Desensamble de Cromatina , Elementos de Facilitación Genéticos , Vigilancia Inmunológica/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , Ciclo Celular/genética , Proteínas de Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Inmunoprecipitación de Cromatina , Análisis por Conglomerados , Biología Computacional/métodos , Fibroblastos , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Histonas/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Motivos de Nucleótidos , Oncogenes , Comunicación Paracrina , Posición Específica de Matrices de Puntuación , Unión Proteica
16.
Assay Drug Dev Technol ; 13(7): 347-55, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26267765

RESUMEN

Uptake of nutrients, such as glucose and amino acids, is critical to support cell growth and is typically mediated by cell surface transporters. An alternative mechanism for the bulk uptake of nutrients from the extracellular space is macropinocytosis, a nonclathrin, and nonreceptor-mediated endocytic process, in which extracellular fluid is taken up into large intracellular vesicles called macropinosomes. Oncogenic transformation leads to the increased metabolic activity of tumor cells, and in the Ras-driven tumor part of this enhanced activity is the stimulation of macropinocytosis. To measure oncogene-dependent macropinocytosis, we used HeLa cells expressing oncogenic HRAS(G12D) driven from a Tet-regulated promoter. Upon oncogenic HRAS expression, the cells undergo metabolic changes that include the elevation of macropinocytosis. We detected macropinocytosis through the uptake of lysine-fixable tetramethyl rhodamine (TMR)-Dextran (70 kDa) from the cell media into nascent intracellular macropinosomes. These macropinosomes were quantified by image-based high-content analysis, with the size, intensity, and position of macropinosomes measured. Using this model system, we ran a full genome-wide siRNA screen (siGenome™; GE) to identify genes involved in controlling oncogenic HRAS-dependent macropinocytosis. Hits from the primary screen were confirmed with siRNA reagents from a different library (GE, OTP), which allowed us to mitigate potential off-target effects. Candidate genes from this screen include known regulators of macropinocytosis as well as novel targets.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Oncogenes , Pinocitosis , Proteínas Proto-Oncogénicas p21(ras)/genética , ARN Interferente Pequeño/genética , Células HeLa , Humanos
17.
Drug Discov Today ; 9(21): 932-9, 2004 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-15501728

RESUMEN

c-Jun N-terminal kinases (JNKs) have been recognized as important enzymes in cellular function. JNK3, which is predominantly found in CNS neurons, has been implicated in several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and stroke. In particular, JNK3 has been found to have an upstream role in neuronal ischemic apoptosis. JNK3 is highly expressed and activated in postmortem brains of individuals that suffered from Alzheimer's disease. Furthermore, mice that are deficient in JNK3 are more resistant to 1-methyl-4-phenyl-1,2,4,6-tetrahydropyridine (a neurotoxin that mimics the neuropathological characteristics of Parkinson's disease) than their wild-type littermates. Because of the involvement of JNK3 in neuronal diseases, the inhibition of this enzyme is an attractive therapeutic target.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Proteína Quinasa 10 Activada por Mitógenos/antagonistas & inhibidores , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/enzimología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Proteína Quinasa 10 Activada por Mitógenos/metabolismo
19.
J Biomol Screen ; 19(10): 1327-37, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25163683

RESUMEN

For well over a decade, RNA interference (RNAi) has provided a powerful tool for investigators to query specific gene targets in an easily modulated loss-of-function setting, both in vitro and in vivo. Hundreds of publications have demonstrated the utility of RNAi in arrayed and pooled-based formats, in a wide variety of cell-based systems, including clonal, stem, transformed, and primary cells. Over the years, there have been significant improvements in the design of target-specific small-interfering RNA (siRNA) and short-hairpin RNA (shRNA), expression vectors, methods for mitigating off-target effects, and accurately interpreting screening results. Recent developments in RNAi technology include the Sensor assay, high-efficiency miR-E shRNAs, improved shRNA virus production with Pasha (DRGC8) knockdown, and assessment of RNAi off-target effects by using the C9-11 method. An exciting addition to the arsenal of RNA-mediated gene modulation is the clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas) system for genomic editing, allowing for gene functional knockout rather than knockdown.


Asunto(s)
Genómica/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , ARN Guía de Kinetoplastida , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Proteínas de Drosophila/genética , Humanos , Mamíferos/genética , Interferencia de ARN , ARN Interferente Pequeño , Proteínas de Unión al ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA