Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 32(8): 13438-13449, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38859314

RESUMEN

This article deals with the optical study of nanostructured components which absorb light across the entire long-wave infrared (LWIR) spectral band. The components are made of type-II superlattice (T2SL) absorber and highly doped InAsSb, the latter being nanostructured to ensure multiple resonances. We studied two components: in the first one, the T2SL has a thickness of 1.6 µm, and in the second its thickness is 300 nm. The calculated absorption spectra were shown and the components revealed high absorption thanks to optical resonance and high angular acceptance. A fabrication process has been developed, and optical measurements have confirmed the reliability of the model.

2.
Nano Lett ; 14(9): 5044-51, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25119792

RESUMEN

We investigate the organized formation of strain, ripples, and suspended features in macroscopic graphene sheets transferred onto corrugated substrates made of an ordered array of silica pillars with variable geometries. Depending on the pitch and sharpness of the corrugated array, graphene can conformally coat the surface, partially collapse, or lie fully suspended between pillars in a fakir-like fashion over tens of micrometers. With increasing pillar density, ripples in collapsed films display a transition from random oriented pleats emerging from pillars to organized domains of parallel ripples linking pillars, eventually leading to suspended tent-like features. Spatially resolved Raman spectroscopy, atomic force microscopy, and electronic microscopy reveal uniaxial strain domains in the transferred graphene, which are induced and controlled by the geometry. We propose a simple theoretical model to explain the structural transition between fully suspended and collapsed graphene. For the arrays of high density pillars, graphene membranes stay suspended over macroscopic distances with minimal interaction with the pillars' apexes. It offers a platform to tailor stress in graphene layers and opens perspectives for electron transport and nanomechanical applications.

3.
Opt Express ; 18(11): 11979-89, 2010 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-20589060

RESUMEN

We have developed surface-emitting single-mode quantum cascade lasers which employ high-contrast photonic-crystal resonators. The devices operate on band-edge states of the photonic band-structure. The mode profile and polarization characteristics of the band-edge modes are calculated by three-dimensional finite-difference time-domain simulation. Experimentally, the spectral properties, the far-field patterns, and the polarization characteristics of the lasers are determined and compared with simulations. The good agreement between the simulations and the experiments confirms that the hexapolar mode at the Gamma-point band-edge gives rise to lasing. By using a novel and advanced fabrication method, deep and vertical PhC holes are fabricated with no metal redeposition on the sidewalls, which improves the laser performance with respect to the current status. The angular of the output beam is approximately 15 masculine, and the side mode suppression ratio of the single mode emission is about 25 dB. The threshold current density at 78 K and the maximum operation temperature are 7.6 kA/cm2 and 220 K, respectively. The performance is mainly limited by the loss induced by surface plasmon waveguide, which can be overcome by using an optimized dielectric waveguide structure.


Asunto(s)
Rayos Láser , Resonancia por Plasmón de Superficie/instrumentación , Transductores , Diseño de Equipo , Análisis de Falla de Equipo , Fotones , Teoría Cuántica , Vibración
4.
ACS Nano ; 12(4): 3235-3242, 2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29553713

RESUMEN

Semiconducting two-dimensional (2D) materials, such as transition-metal dichalcogenides (TMDs), are emerging in nanomechanics, optoelectronics, and thermal transport. In each of these fields, perfect control over 2D material properties including strain, doping, and heating is necessary, especially on the nanoscale. Here, we study clean devices consisting of membranes of single-layer MoS2 suspended on pillar arrays. Using Raman and photoluminescence spectroscopy, we have been able to extract, separate, and simulate the different contributions on the nanoscale and to correlate these to the pillar array design. This control has been used to design a periodic MoS2 mechanical membrane with a high reproducibility and to perform optomechanical measurements on arrays of similar resonators with a high-quality factor of 600 at ambient temperature, hence opening the way to multiresonator applications with 2D materials. At the same time, this study constitutes a reference for the future development of well-controlled optical emissions within 2D materials on periodic arrays with reproducible behavior. We measured a strong reduction of the MoS2 band gap induced by the strain generated from the pillars. A transition from direct to indirect band gap was observed in isolated tent structures made of MoS2 and pinched by a pillar. In fully suspended devices, simulations were performed allowing both the extraction of the thermal conductance and doping of the layer. Using the correlation between the influences of strain and doping on the MoS2 Raman spectrum, we have developed a simple, elegant method to extract the local strain in suspended and nonsuspended parts of a membrane. This opens the way to experimenting with tunable coupling between light emission and vibration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA