Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7289, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37963862

RESUMEN

C-glycosides are natural products with important biological activities but are recalcitrant to degradation. Glycoside 3-oxidases (G3Oxs) are recently identified bacterial flavo-oxidases from the glucose-methanol-coline (GMC) superfamily that catalyze the oxidation of C-glycosides with the concomitant reduction of O2 to H2O2. This oxidation is followed by C-C acid/base-assisted bond cleavage in two-step C-deglycosylation pathways. Soil and gut microorganisms have different oxidative enzymes, but the details of their catalytic mechanisms are largely unknown. Here, we report that PsG3Ox oxidizes at 50,000-fold higher specificity (kcat/Km) the glucose moiety of mangiferin to 3-keto-mangiferin than free D-glucose to 2-keto-glucose. Analysis of PsG3Ox X-ray crystal structures and PsG3Ox in complex with glucose and mangiferin, combined with mutagenesis and molecular dynamics simulations, reveal distinctive features in the topology surrounding the active site that favor catalytically competent conformational states suitable for recognition, stabilization, and oxidation of the glucose moiety of mangiferin. Furthermore, their distinction to pyranose 2-oxidases (P2Oxs) involved in wood decay and recycling is discussed from an evolutionary, structural, and functional viewpoint.


Asunto(s)
Glicósidos Cardíacos , Oxidorreductasas , Oxidorreductasas/metabolismo , Peróxido de Hidrógeno , Glicósidos/metabolismo , Glucosa/metabolismo , Especificidad por Sustrato , Glicósido Hidrolasas/metabolismo
2.
Nat Commun ; 13(1): 5577, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36151080

RESUMEN

In the barley ß-D-glucan glucohydrolase, a glycoside hydrolase family 3 (GH3) enzyme, the Trp286/Trp434 clamp ensures ß-D-glucosides binding, which is fundamental for substrate hydrolysis during plant growth and development. We employ mutagenesis, high-resolution X-ray crystallography, and multi-scale molecular modelling methods to examine the binding and conformational behaviour of isomeric ß-D-glucosides during substrate-product assisted processive catalysis that operates in GH3 hydrolases. Enzyme kinetics reveals that the W434H mutant retains broad specificity, while W434A behaves as a strict (1,3)-ß-D-glucosidase. Investigations of reactant movements on the nanoscale reveal that processivity is sensitive to mutation-specific alterations of the tryptophan clamp. While wild-type and W434H utilise a lateral cavity for glucose displacement and sliding of (1,3)-linked hydrolytic products through the catalytic site without dissociation, consistent with their high hydrolytic rates, W434A does not adopt processive catalysis. Phylogenomic analyses of GH3 hydrolases disclose the evolutionary advantage of the tryptophan clamp that confers broad specificity, high catalytic efficiency, and processivity.


Asunto(s)
Glicósido Hidrolasas , Triptófano , Cristalografía por Rayos X , Glucosa , Glucosidasas/química , Glucósidos , Glicósido Hidrolasas/metabolismo , Glicósidos , Cinética , Plantas/metabolismo , Especificidad por Sustrato
3.
Nanomaterials (Basel) ; 7(12)2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29261111

RESUMEN

Lipid nanoparticles (LNP) are promising soft matter nanomaterials for drug delivery applications. In spite of their interest, little is known about the supramolecular organization of the components of these self-assembled nanoparticles. Here, we present a molecular dynamics simulation study, employing the Martini coarse-grain forcefield, of self-assembled LNPs made by tripalmitin lipid in water. We also study the adsorption of Tween 20 surfactant as a protective layer on top of the LNP. We show that, at 310 K (the temperature of interest in biological applications), the structure of the lipid nanoparticles is similar to that of a liquid droplet, in which the lipids show no nanostructuration and have high mobility. We show that, for large enough nanoparticles, the hydrophilic headgroups develop an interior surface in the NP core that stores liquid water. The surfactant is shown to organize in an inhomogeneous way at the LNP surface, with patches with high surfactant concentrations and surface patches not covered by surfactant.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA