Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Hepatology ; 75(2): 353-368, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34490644

RESUMEN

BACKGROUND AND AIMS: Ductular reaction (DR) expands in chronic liver diseases and correlates with disease severity. Besides its potential role in liver regeneration, DR plays a role in the wound-healing response of the liver, promoting periductular fibrosis and inflammatory cell recruitment. However, there is no information regarding its role in intrahepatic angiogenesis. In the current study we investigated the potential contribution of DR cells to hepatic vascular remodeling during chronic liver disease. APPROACH AND RESULTS: In mouse models of liver injury, DR cells express genes involved in angiogenesis. Among angiogenesis-related genes, the expression of Slit2 and its receptor Roundabout 1 (Robo1) was localized in DR cells and neoangiogenic vessels, respectively. The angiogenic role of the Slit2-Robo1 pathway in chronic liver disease was confirmed in ROBO1/2-/+ mice treated with 3,5-diethoxycarbonyl-1,4-dihydrocollidine, which displayed reduced intrahepatic neovascular density compared to wild-type mice. However, ROBO1/2 deficiency did not affect angiogenesis in partial hepatectomy. In patients with advanced alcohol-associated disease, angiogenesis was associated with DR, and up-regulation of SLIT2-ROBO1 correlated with DR and disease severity. In vitro, human liver-derived organoids produced SLIT2 and induced tube formation of endothelial cells. CONCLUSIONS: Overall, our data indicate that DR expansion promotes angiogenesis through the Slit2-Robo1 pathway and recognize DR cells as key players in the liver wound-healing response.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/genética , Hepatopatías Alcohólicas/fisiopatología , Hígado/fisiopatología , Neovascularización Patológica/genética , Proteínas del Tejido Nervioso/genética , Receptores Inmunológicos/genética , Animales , Vasos Sanguíneos/metabolismo , Enfermedad Crónica , Progresión de la Enfermedad , Expresión Génica , Ontología de Genes , Hepatitis Alcohólica/patología , Hepatitis Alcohólica/fisiopatología , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Hígado/metabolismo , Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/patología , Ratones , Neovascularización Patológica/patología , Neovascularización Fisiológica/genética , Proteínas del Tejido Nervioso/metabolismo , Organoides , Gravedad del Paciente , Receptores Inmunológicos/metabolismo , Transducción de Señal/genética , Células Madre , Regulación hacia Arriba , Remodelación Vascular , Cicatrización de Heridas , Proteínas Roundabout
2.
Am J Pathol ; 186(3): 517-23, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26784526

RESUMEN

Niemann-Pick C disease is a neurovisceral disorder caused by mutations in the NPC gene that result in systemic accumulation of intracellular cholesterol. Although neurodegeneration defines the disease's severity, in most patients it is preceded by hepatic complications such as cholestatic jaundice or hepatomegaly. To analyze the contribution of the hepatic disease in Niemann-Pick C disease progression and to evaluate the degree of primary and secondary hepatic damage, we generated a transgenic mouse with liver-selective expression of NPC1 from embryonic stages. Hepatic NPC1 re-expression did not ameliorate the onset and progression of neurodegeneration of the NPC1-null animal. However, the mice showed reduced hepatomegalia and dramatic, although not complete, reduction of hepatic cholesterol and serum bile salts, bilirubin, and transaminase levels. Therefore, hepatic primary and secondary cholesterol deposition and damage occur simultaneously during Niemann-Pick C disease progression.


Asunto(s)
Colesterol/metabolismo , Modelos Animales de Enfermedad , Hepatopatías/complicaciones , Hígado/metabolismo , Enfermedad de Niemann-Pick Tipo C/metabolismo , Proteínas/genética , Animales , Ácidos y Sales Biliares/sangre , Bilirrubina/sangre , Colesterol/análisis , Progresión de la Enfermedad , Células Madre Embrionarias , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular , Hígado/patología , Hepatopatías/genética , Hepatopatías/metabolismo , Hepatopatías/patología , Masculino , Ratones , Ratones Noqueados , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/complicaciones , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/patología , Proteínas/metabolismo , Transaminasas/sangre
3.
Nat Commun ; 6: 7176, 2015 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-26013497

RESUMEN

Lipid droplets (LDs) are intracellular organelles that provide fatty acids (FAs) to cellular processes including synthesis of membranes and production of metabolic energy. While known to move bidirectionally along microtubules (MTs), the role of LD motion and whether it facilitates interaction with other organelles are unclear. Here we show that during nutrient starvation, LDs and mitochondria relocate on detyrosinated MT from the cell centre to adopt a dispersed distribution. In the cell periphery, LD-mitochondria interactions increase and LDs efficiently supply FAs for mitochondrial beta-oxidation. This cellular adaptation requires the activation of the energy sensor AMPK, which in response to starvation simultaneously increases LD motion, reorganizes the network of detyrosinated MTs and activates mitochondria. In conclusion, we describe the existence of a specialized cellular network connecting the cellular energetic status and MT dynamics to coordinate the functioning of LDs and mitochondria during nutrient scarcity.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Ácidos Grasos/metabolismo , Gotas Lipídicas/metabolismo , Microtúbulos/metabolismo , Mitocondrias/metabolismo , Animales , Células COS , Chlorocebus aethiops , Oxidación-Reducción , Tirosina/metabolismo , Células Vero
4.
Curr Biol ; 23(15): 1489-96, 2013 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-23871243

RESUMEN

Lipid droplets (LDs) are dynamic organelles that collect, store, and supply lipids [1]. LDs have a central role in the exchange of lipids occurring between the cell and the environment and provide cells with substrates for energy metabolism, membrane synthesis, and production of lipid-derived molecules such as lipoproteins or hormones. However, lipid-derived metabolites also cause progressive lipotoxicity [2], accumulation of reactive oxygen species (ROS), endoplasmic reticulum stress, mitochondrial malfunctioning, and cell death [2]. Intracellular accumulation of LDs is a hallmark of prevalent human diseases, including obesity, steatosis, diabetes, myopathies, and arteriosclerosis [3]. Indeed, nonalcoholic fatty liver disease is the most common cause of abnormal hepatic function among adults [4, 5]. Lipotoxicity gradually promotes cellular ballooning and disarray, megamitochondria, accumulation of Mallory's hyaline in hepatocytes, and inflammation, fibrosis, and cirrhosis in the liver. Here, using confocal microscopy, serial-block-face scanning electron microscopy, and flow cytometry, we show that LD accumulation is heterogeneous within a cell population and follows a positive skewed distribution. Lipid availability and fluctuations in biochemical networks controlling lipolysis, fatty acid oxidation, and protein synthesis contribute to cell-to-cell heterogeneity. Critically, this reversible variability generates a subpopulation of cells that effectively collect and store lipids. This high-lipid subpopulation accumulates more LDs and more ROS and reduces the risk of lipotoxicity to the population without impairing overall lipid homeostasis, since high-lipid cells can supply stored lipids to the other cells. In conclusion, we demonstrate fat storage compartmentalization within a cell population and propose that this is a protective social organization to reduce lipotoxicity.


Asunto(s)
Hepatocitos/citología , Metabolismo de los Lípidos , Lípidos/química , Animales , Compuestos de Boro/metabolismo , Ácidos Grasos/metabolismo , Citometría de Flujo , Hepatocitos/metabolismo , Lípidos/fisiología , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo
5.
J Cell Biol ; 203(6): 985-1001, 2013 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-24368806

RESUMEN

Control of lipid droplet (LD) nucleation and copy number are critical, yet poorly understood, processes. We use model peptides that shift from the endoplasmic reticulum (ER) to LDs in response to fatty acids to characterize the initial steps of LD formation occurring in lipid-starved cells. Initially, arriving lipids are rapidly packed in LDs that are resistant to starvation (pre-LDs). Pre-LDs are restricted ER microdomains with a stable core of neutral lipids. Subsequently, a first round of "emerging" LDs is nucleated, providing additional lipid storage capacity. Finally, in proportion to lipid concentration, new rounds of LDs progressively assemble. Confocal microscopy and electron tomography suggest that emerging LDs are nucleated in a limited number of ER microdomains after a synchronized stepwise process of protein gathering, lipid packaging, and recognition by Plin3 and Plin2. A comparative analysis demonstrates that the acyl-CoA synthetase 3 is recruited early to the assembly sites, where it is required for efficient LD nucleation and lipid storage.


Asunto(s)
Coenzima A Ligasas/fisiología , Retículo Endoplásmico/metabolismo , Metabolismo de los Lípidos , Animales , Células COS , Caveolina 1/química , Chlorocebus aethiops , Coenzima A Ligasas/análisis , Coenzima A Ligasas/metabolismo , Retículo Endoplásmico/ultraestructura , Proteínas Fluorescentes Verdes/análisis , Espacio Intracelular , Metiltransferasas/química , Ingeniería de Proteínas , Señales de Clasificación de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA