Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Plant Biotechnol J ; 21(12): 2683-2697, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37749961

RESUMEN

Higher dietary intakes of flavonoids may have a beneficial role in cardiovascular disease prevention. Additionally, supplementation of branched-chain amino acids (BCAAs) in vegan diets can reduce risks associated to their deficiency, particularly in older adults, which can cause loss of skeletal muscle strength and mass. Most plant-derived foods contain only small amounts of BCAAs, and those plants with high levels of flavonoids are not eaten broadly. Here we describe the generation of metabolically engineered cisgenic tomatoes enriched in both flavonoids and BCAAs. In this approach, coding and regulatory DNA elements, all derived from the tomato genome, were combined to obtain a herbicide-resistant version of an acetolactate synthase (mSlALS) gene expressed broadly and a MYB12-like transcription factor (SlMYB12) expressed in a fruit-specific manner. The mSlALS played a dual role, as a selectable marker as well as being key enzyme in BCAA enrichment. The resulting cisgenic tomatoes were highly enriched in Leucine (21-fold compared to wild-type levels), Valine (ninefold) and Isoleucine (threefold) and concomitantly biofortified in several antioxidant flavonoids including kaempferol (64-fold) and quercetin (45-fold). Comprehensive metabolomic and transcriptomic analysis of the biofortified cisgenic tomatoes revealed marked differences to wild type and could serve to evaluate the safety of these biofortified fruits for human consumption.


Asunto(s)
Aminoácidos de Cadena Ramificada , Solanum lycopersicum , Humanos , Aminoácidos de Cadena Ramificada/metabolismo , Solanum lycopersicum/genética , Flavonoides , Leucina , Frutas/genética , Frutas/metabolismo , Isoleucina/metabolismo
2.
Phytopathology ; 113(7): 1347-1359, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36690608

RESUMEN

Tomato yellow leaf curl disease (TYLCD) causes severe damage to tomato crops in warm regions of the world, and is associated with infections of several whitefly (Bemisia tabaci)-transmitted single-stranded (ss)DNA begomoviruses (genus Begomovirus, family Geminiviridae). The most widespread begomovirus isolates associated with TYLCD are those of the type strain of the Tomato yellow leaf curl virus species, known as Israel (TYLCV-IL). The Ty-1 gene is widely used in commercial tomato cultivars to control TYLCV-IL damage, providing resistance to the virus by restricting viral accumulation and tolerance to TYLCD by inhibiting disease symptoms. However, several reports suggest that TYLCV-IL-like isolates are adapting to the Ty-1 gene and are causes of concern for possibly overcoming the provided control. This is the case with TYLCV-IL IS76-like recombinants that have a small genome fragment acquired by genetic exchange from an isolate of Tomato yellow leaf curl Sardinia virus, another begomovirus species associated with TYLCD. Here we show that TYLCV-IL IS76-like isolates partially break down the TYLCD-tolerance provided by the Ty-1 gene and that virulence differences might exist between isolates. Interestingly, we demonstrate that mixed infections with an isolate of the crinivirus (genus Crinivirus, family Closteroviridae) species Tomato chlorosis virus (ToCV), an ssRNA virus also transmitted by B. tabaci and emerging worldwide in tomato crops, boosts the breakdown of the TYLCD-tolerance provided by the Ty-1 gene either with TYLCV-IL IS76-like or canonical TYLCV-IL isolates. Moreover, we demonstrate the incorporation of the Ty-2 gene in Ty-1-commercial tomatoes to restrict (no virus or virus traces, no symptoms) systemic infections of recombinant TYLCV-IL IS76-like and canonical TYLCV-IL isolates, even in the presence of ToCV infections, which provides more robust and durable control of TYLCD.


Asunto(s)
Begomovirus , Crinivirus , Solanum lycopersicum , Begomovirus/genética , Crinivirus/genética , Enfermedades de las Plantas
3.
Phytopathology ; 113(9): 1677-1685, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36998120

RESUMEN

Whitefly-transmitted viruses are one of the biggest threats to tomato (Solanum lycopersicum) growing worldwide. Strategies based on the introgression of resistance traits from wild relatives are promoted to control tomato pests and diseases. Recently, a trichome-based resistance characterizing the wild species Solanum pimpinellifolium was introgressed into a cultivated tomato. An advanced backcross line (BC5S2) exhibiting the presence of acylsugar-associated type IV trichomes, which are lacking in cultivated tomatoes, was effective at controlling whiteflies (Hemiptera: Aleyrodidae) and limiting the spread of whitefly-transmitted viruses. However, at early growth stages, type IV trichome density and acylsugar production are limited; thus, protection against whiteflies and whitefly-transmitted viruses remains irrelevant. In this work, we demonstrate that young BC5S2 tomato plants feeding-punctured by the zoophytophagous predator Nesidiocoris tenuis (Hemiptera: Miridae) displayed an increase (above 50%) in type IV trichome density. Acylsugar production was consistently increased in N. tenuis-punctured BC5S2 plants, which was more likely associated with upregulated expression of the BCKD-E2 gene related to acylsugar biosynthesis. In addition, the infestation of BC5S2 plants with N. tenuis effectively induced the expression of defensive genes involved in the jasmonic acid signaling pathway, resulting in strong repellence to Bemisia tabaci and attractiveness to N. tenuis. Thus, through preplant release of N. tenuis in tomato nurseries carried out in some integrated pest management programs, type IV trichome-expressing plants can be prepared to control whiteflies and whitefly-transmitted viruses at early growth stages. This study emphasizes the advantage of reinforcing constitutive resistance using defense inducers to guarantee robust protection against pests and transmitted viruses.


Asunto(s)
Hemípteros , Solanum lycopersicum , Solanum , Animales , Tricomas , Enfermedades de las Plantas , Productos Agrícolas
4.
Plant Dis ; 107(2): 473-479, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35771117

RESUMEN

Seed transmission can be of considerable relevance to the dissemination of plant viruses in nature and for their prevalence and perpetuation. Long-distance spread of isolates of the begomovirus species Tomato leaf curl New Delhi virus (genus Begomovirus, family Geminiviridae) has recently occurred from Asia to the Middle East and the Mediterranean Basin. Here, we investigated the possible transmission by melon (Cucumis melo L.) seeds of a tomato leaf curl New Delhi virus (ToLCNDV) isolate of the "Spain" strain widely distributed in the Mediterranean area as an alternative mechanism for long-distance spread. PCR amplification detection of ToLCNDV in floral parts and mature seeds of melon plants reveals that this virus is seedborne. "Seedborne" is defined as the ability of a virus to be carried through seeds, which does not necessarily lead to transmission to the next generation. Treatment with a chemical disinfectant significantly reduced the detectable virus associated with melon seeds, suggesting ToLCNDV contamination of the external portion of the seed coat. Also, when the internal fraction of the mature seed (seed cotyledons + embryo) was analyzed by quantitative PCR amplification, ToLCNDV was detectable at low levels, suggesting the potential for viral contamination or infection of the internal portions of seed. However, grow-out studies conducted with melon progeny plants germinated from mature seeds collected from ToLCNDV-infected plants and evaluated at early (1-leaf) or at late (20-leaf) growth stages did not support the transmission of ToLCNDV from seeds to offspring.


Asunto(s)
Begomovirus , Cucurbitaceae , Enfermedades de las Plantas , Semillas
5.
Plant Dis ; 103(6): 1181-1188, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30908127

RESUMEN

Epidemics of tomato yellow leaf curl disease (TYLCD) caused by tomato yellow leaf curl-like begomoviruses (genus Begomovirus, family Geminiviridae) severely damage open field and protected tomato crops worldwide. Intensive application of insecticides against the whitefly vector Bemisia tabaci is generally used as control strategy to reduce TYLCD impact. This practice, however, is frequently ineffective and has a negative impact on the environment and human health. TYLCD-resistant varieties are commercially available, but cultivation of susceptible traditional tasting ones is also requested if possible. For susceptible tomatoes, here we show that using whitefly optical barriers by means of UV-blocking plastics in protected crops can contribute to reducing TYLCD damage and increasing commercial fruit yield. Moreover, induction of systemic acquired resistance by application of the elicitor of plant defense acibenzolar-S-methyl was effective to reduce yield losses when viral pressure was moderate. Interestingly, combining both practices in protected tomato crops can result in a significant TYLCD control. Therefore, these control practices are proposed to be used commercially as management alternatives to include in integrated management of TYLCD.


Asunto(s)
Begomovirus , Resistencia a la Enfermedad , Hemípteros , Solanum lycopersicum , Animales , Begomovirus/fisiología , Productos Agrícolas/virología , Hemípteros/virología , Solanum lycopersicum/virología
6.
J Exp Bot ; 68(3): 429-442, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28040800

RESUMEN

Volatile organic compounds (VOCs) are major determinants of fruit flavor, a primary objective in tomato breeding. A recombinant inbred line (RIL) population consisting of 169 lines derived from a cross between Solanum lycopersicum and a red-fruited wild tomato species Solanum pimpinellifolium accession (SP) was characterized for VOCs in three different seasons. Correlation and hierarchical cluster analyses were performed on the 52 VOCs identified, providing a tool for the putative assignation of individual compounds to metabolic pathways. Quantitative trait locus (QTL) analysis, based on a genetic linkage map comprising 297 single nucleotide polymorphisms (SNPs), revealed 102 QTLs (75% not described previously) corresponding to 39 different VOCs. The SP alleles exerted a positive effect on most of the underlying apocarotenoid volatile QTLs-regarded as desirable for liking tomato-indicating that alleles inherited from SP are a valuable resource for flavor breeding. An introgression line (IL) population developed from the same parental genotypes provided 12 ILs carrying a single SP introgression and covering 85 VOC QTLs, which were characterized at three locations. The results showed that almost half of the QTLs previously identified in the RILs maintained their effect in an IL form, reinforcing the value of these QTLs for flavor/aroma breeding in cultivated tomato.


Asunto(s)
Genes de Plantas , Sitios de Carácter Cuantitativo , Solanum/genética , Solanum/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Frutas/química , Frutas/metabolismo , Hibridación Genética , Compuestos Orgánicos Volátiles/química
7.
Theor Appl Genet ; 130(5): 903-913, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28280866

RESUMEN

KEY MESSAGE: Agronomical characterization of a RIL population for fruit mineral contents allowed for the identification of QTL controlling these fruit quality traits, flanked by co-dominant markers useful for marker-assisted breeding. Tomato quality is a multi-variant attribute directly depending on fruit chemical composition, which in turn determines the benefits of tomato consumption for human health. Commercially available tomato varieties possess limited variability in fruit quality traits. Wild species, such as Solanum pimpinellifolium, could provide different nutritional advantages and can be used for tomato breeding to improve overall fruit quality. Determining the genetic basis of the inheritance of all the traits that contribute to tomato fruit quality will increase the efficiency of the breeding program necessary to take advantage of the wild species variability. A high-density linkage map has been constructed from a recombinant inbred line (RIL) population derived from a cross between tomato Solanum lycopersicum and the wild-relative species S. pimpinellifolium. The RIL population was evaluated for fruit mineral contents during three consecutive growing seasons. The data obtained allowed for the identification of main QTL and novel epistatic interaction among QTL controlling fruit mineral contents on the basis of a multiple-environment analysis. Most of the QTL were flanked by candidate genes providing valuable information for both tomato breeding for new varieties with novel nutritional properties and the starting point to identify the genes underlying these QTL, which will help to reveal the genetic basis of tomato fruit nutritional properties.


Asunto(s)
Barajamiento de ADN , Frutas/química , Sitios de Carácter Cuantitativo , Solanum lycopersicum/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Cruzamientos Genéticos , Epistasis Genética , Ligamiento Genético , Minerales/análisis , Valor Nutritivo , Fitomejoramiento , Solanum/genética , Oligoelementos/análisis
8.
Plant Physiol ; 166(3): 1371-86, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25277718

RESUMEN

Tomato (Solanum lycopersicum) fruit ripening is accompanied by an increase in CHALCONE SYNTHASE (CHS) activity and flavonoid biosynthesis. Flavonoids accumulate in the cuticle, giving its characteristic orange color that contributes to the eventual red color of the ripe fruit. Using virus-induced gene silencing in fruits, we have down-regulated the expression of SlCHS during ripening and compared the cuticles derived from silenced and nonsilenced regions. Silenced regions showed a pink color due to the lack of flavonoids incorporated to the cuticle. This change in color was accompanied by several other changes in the cuticle and epidermis. The epidermal cells displayed a decreased tangential cell width; a decrease in the amount of cuticle and its main components, cutin and polysaccharides, was also observed. Flavonoids dramatically altered the cuticle biomechanical properties by stiffening the elastic and viscoelastic phase and by reducing the ability of the cuticle to deform. There seemed to be a negative relation between SlCHS expression and wax accumulation during ripening that could be related to the decreased cuticle permeability to water observed in the regions silencing SlCHS. A reduction in the overall number of ester linkages present in the cutin matrix was also dependent on the presence of flavonoids.


Asunto(s)
Aciltransferasas/genética , Epidermis de la Planta/citología , Solanum lycopersicum/fisiología , Aciltransferasas/metabolismo , Flavonoides/metabolismo , Frutas/citología , Frutas/fisiología , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Ceras/química
9.
Theor Appl Genet ; 128(10): 2019-35, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26163766

RESUMEN

KEY MESSAGE: QTL and candidate genes associated to fruit quality traits have been identified in a tomato genetic map derived from Solanum pimpinellifolium L., providing molecular tools for marker-assisted breeding. The study of genetic, physiological, and molecular pathways involved in fruit development and ripening has considered tomato as the model fleshy-fruited species par excellence. Fruit quality traits regarding organoleptic and nutritional properties are major goals for tomato breeding programs since they largely decide the acceptance of tomato in both fresh and processing markets. Here we report the genetic mapping of single-locus and epistatic quantitative trait loci (QTL) associated to the fruit size and content of sugars, acids, vitamins, and carotenoids from the characterization of a RIL population derived from the wild-relative Solanum pimpinellifolium TO-937. A genetic map composed of 353 molecular markers including 13 genes regulating fruit and developmental traits was generated, which spanned 1007 cM with an average distance between markers of 2.8 cM. Genetic analyses indicated that fruit quality traits analyzed in this work exhibited transgressive segregation and that additive and epistatic effects are the major genetic basis of fruit quality traits. Moreover, most mapped QTL showed environment interaction effects. FrW7.1 fruit size QTL co-localized with QTL involved in soluble solid, vitamin C, and glucose contents, dry weight/fresh weight, and most importantly with the Sucrose Phosphate Synthase gene, suggesting that polymorphisms in this gene could influence genetic variation in several fruit quality traits. In addition, 1-deoxy-D-xylulose 5-phosphate synthase and Tocopherol cyclase genes were identified as candidate genes underlying QTL variation in beta-carotene and vitamin C. Together, our results provide useful genetic and molecular information regarding fruit quality and new chances for tomato breeding by implementing marker-assisted selection.


Asunto(s)
Calidad de los Alimentos , Frutas , Sitios de Carácter Cuantitativo , Solanum lycopersicum/genética , Solanum/genética , Ácido Ascórbico/análisis , Mapeo Cromosómico , ADN de Plantas/genética , Frutas/química , Interacción Gen-Ambiente , Genes de Plantas , Ligamiento Genético , Marcadores Genéticos , Glucosa/análisis , Endogamia , Fitomejoramiento , beta Caroteno/análisis
10.
J Exp Bot ; 65(16): 4589-98, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24723405

RESUMEN

Fruits are generally regarded as photosynthate sinks as they rely on energy provided by sugars transported from leaves to carry out the highly demanding processes of development and ripening; eventually these imported photosynthates also contribute to the fruit organoleptic properties. Three recent reports have revealed, however, that transcriptional factors enhancing chloroplast development in fruit may result in higher contents not only of tomato fruit-specialized metabolites but also of sugars. In addition to suggesting new ways to improve fruit quality by fortifying fruit chloroplasts and plastids, these results prompted us to re-evaluate the importance of the contribution of chloroplasts/photosynthesis to fruit development and ripening.


Asunto(s)
Cloroplastos/fisiología , Frutas/fisiología , Solanum lycopersicum/fisiología , Frutas/genética , Fototransducción , Solanum lycopersicum/genética , Estrés Oxidativo , Fotosíntesis
11.
Theor Appl Genet ; 126(1): 83-92, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22903693

RESUMEN

A novel source of resistance to two-spotted spider mite (Tetranychus urticae Koch) was found in Solanum pimpinellifolium L. accession TO-937 and thereby a potential source of desirable traits that could be introduced into new tomato varieties. This resistance was found to be controlled by a major locus modulated by minor loci of unknown location in the genome of this wild tomato. We first applied a bulked segregant analysis (BSA) approach in an F(4) population as a method for rapidly identifying a genomic region of 17 cM on chromosome 2, flanked by two simple sequence repeat markers, harboring Rtu2.1, one of the major QTL involved in the spider mite resistance. A population of 169 recombinant inbred lines was also evaluated for spider mite infestation and a highly saturated genetic map was developed from this population. QTL mapping corroborated that chromosome 2 harbored the Rtu2.1 QTL in the same region that our previous BSA findings pointed out, but an even more robust QTL was found in the telomeric region of this chromosome. This QTL, we termed Rtu2.2, had a LOD score of 15.43 and accounted for more than 30% of the variance of two-spotted spider mite resistance. Several candidate genes involved in trichome formation, synthesis of trichomes exudates and plant defense signaling have been sequenced. However, either the lack of polymorphisms between the parental lines or their map position, away from the QTL, led to their rejection as candidate genes responsible for the two-spotted spider mite resistance. The Rtu2 QTL not only serve as a valuable target for marker-assisted selection of new spider mite-resistant tomato varieties, but also as a starting point for a better understanding of the molecular genetic functions underlying the resistance to this pest.


Asunto(s)
Mapeo Cromosómico/métodos , Enfermedades de las Plantas/genética , Solanum lycopersicum/genética , Alelos , Animales , Cruzamientos Genéticos , Femenino , Genes de Plantas , Marcadores Genéticos , Infestaciones por Ácaros/genética , Modelos Genéticos , Control Biológico de Vectores/métodos , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ADN , Tetranychidae/genética , Tetranychidae/fisiología
12.
PLoS Comput Biol ; 8(6): e1002528, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22685389

RESUMEN

Considering cells as biofactories, we aimed to optimize its internal processes by using the same engineering principles that large industries are implementing nowadays: lean manufacturing. We have applied reverse engineering computational methods to transcriptomic, metabolomic and phenomic data obtained from a collection of tomato recombinant inbreed lines to formulate a kinetic and constraint-based model that efficiently describes the cellular metabolism from expression of a minimal core of genes. Based on predicted metabolic profiles, a close association with agronomic and organoleptic properties of the ripe fruit was revealed with high statistical confidence. Inspired in a synthetic biology approach, the model was used for exploring the landscape of all possible local transcriptional changes with the aim of engineering tomato fruits with fine-tuned biotechnological properties. The method was validated by the ability of the proposed genomes, engineered for modified desired agronomic traits, to recapitulate experimental correlations between associated metabolites.


Asunto(s)
Solanum lycopersicum/genética , Agricultura , Biotecnología , Biología Computacional , Simulación por Computador , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Técnicas de Inactivación de Genes , Ingeniería Genética , Genoma de Planta , Modelos Lineales , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Metaboloma , Modelos Genéticos , Fenotipo , Plantas Modificadas Genéticamente , Biología Sintética , Transcriptoma , Regulación hacia Arriba
13.
BMC Genomics ; 13: 187, 2012 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-22583865

RESUMEN

BACKGROUND: L-ascorbic acid (AsA; vitamin C) is essential for all living plants where it functions as the main hydrosoluble antioxidant. It has diverse roles in the regulation of plant cell growth and expansion, photosynthesis, and hormone-regulated processes. AsA is also an essential component of the human diet, being tomato fruit one of the main sources of this vitamin. To identify genes responsible for AsA content in tomato fruit, transcriptomic studies followed by clustering analysis were applied to two groups of fruits with contrasting AsA content. These fruits were identified after AsA profiling of an F8 Recombinant Inbred Line (RIL) population generated from a cross between the domesticated species Solanum lycopersicum and the wild relative Solanum pimpinellifollium. RESULTS: We found large variability in AsA content within the RIL population with individual RILs with up to 4-fold difference in AsA content. Transcriptomic analysis identified genes whose expression correlated either positively (PVC genes) or negatively (NVC genes) with the AsA content of the fruits. Cluster analysis using SOTA allowed the identification of subsets of co-regulated genes mainly involved in hormones signaling, such as ethylene, ABA, gibberellin and auxin, rather than any of the known AsA biosynthetic genes. Data mining of the corresponding PVC and NVC orthologs in Arabidopis databases identified flagellin and other ROS-producing processes as cues resulting in differential regulation of a high percentage of the genes from both groups of co-regulated genes; more specifically, 26.6% of the orthologous PVC genes, and 15.5% of the orthologous NVC genes were induced and repressed, respectively, under flagellin22 treatment in Arabidopsis thaliana. CONCLUSION: Results here reported indicate that the content of AsA in red tomato fruit from our selected RILs are not correlated with the expression of genes involved in its biosynthesis. On the contrary, the data presented here supports that AsA content in tomato fruit co-regulates with genes involved in hormone signaling and they are dependent on the oxidative status of the fruit.


Asunto(s)
Ácido Ascórbico/metabolismo , Frutas/metabolismo , Genes de Plantas/fisiología , Solanum/metabolismo , Análisis por Conglomerados , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Genes de Plantas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Oxidación-Reducción , Solanum/genética
14.
Curr Opin Biotechnol ; 78: 102802, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36162185

RESUMEN

Ensuring the availability of high-quality fresh fruits requires the development of strategies to maintain prolonged shelf-life. The plant cuticle is a modification of the outer epidermal cell wall and, as such, acts as a barrier with the environment. Understanding how the cuticle naturally changes during postharvest is crucial to address the potential effect of different storage conditions on the cuticle biophysical properties. The impact of different cuticle traits in fruit water loss, its relevance in several fruit-skin disorders, and its participation in postharvest decay caused by pathogens are discussed. Future challenges to study in vivo the physicochemical properties of the cuticle are also addressed.


Asunto(s)
Frutas , Solanum lycopersicum , Frutas/química , Agua , Fenotipo
15.
Sci Rep ; 12(1): 20154, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36418431

RESUMEN

Understanding the responses of insect herbivores to plant chemical defences is pivotal for the management of crops and pests. However, the mechanisms of interaction are not entirely understood. In this study, we compared the whole transcriptome gene expression of the aphid Macrosiphum euphorbiae grown on two different varieties of tomato that differ in their inducible chemical defences. We used two isogenic lines of tomato with a shared genetic background that only differ in the presence of type IV glandular trichomes and their associated acylsucrose excretions. This works also reports a de novo transcriptome of the aphid M. euphorbiae. Subsequently, we identified a unique and distinct gene expression profile for the first time corresponding to aphid´s exposure to type IV glandular trichomes and acylsugars. The analysis of the aphid transcriptome shows that tomato glandular trichomes and their associated secretions are highly efficient in triggering stress-related responses in the aphid, and demonstrating that their role in plant defence goes beyond the physical impediment of herbivore activity. Some of the differentially expressed genes were associated with carbohydrate, lipid and xenobiotic metabolisms, immune system, oxidative stress response and hormone biosynthesis pathways. Also, the observed responses are compatible with a starvation syndrome. The transcriptome analysis puts forward a wide range of genes involved in the synthesis and regulation of detoxification enzymes that reveal important underlying mechanisms in the interaction of the aphid with its host plant and provides a valuable genomic resource for future study of biological processes at the molecular level using this aphid.


Asunto(s)
Áfidos , Solanum lycopersicum , Animales , Áfidos/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Tricomas/genética , Perfilación de la Expresión Génica , Herbivoria
16.
Mol Plant Microbe Interact ; 24(7): 849-61, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21405986

RESUMEN

Tomato yellow leaf curl disease (TYLCD) is a severe threat to tomato crops worldwide and is caused by Tomato yellow leaf curl virus (TYLCV) and several other begomoviruses (genus Begomovirus, family Geminiviridae). Host plant resistance is the best TYLCD control method but limited sources of resistance are available. In this study, two Solanum habrochaites TYLCD-resistance sources, EELM-388 and EELM-889, were found after a wide germplasm screening and were further characterized. A consistent resistance to the widely distributed strain TYLCV-IL was observed when plants were inoculated by Bemisia tabaci or by agroinoculation using an infectious clone, with no symptoms or virus accumulation observed in inoculated plants. Moreover, the resistance was effective under field conditions with high TYLCD pressure. Two independent loci, one dominant and one recessive, were associated with EELM-889 resistance. The study shows these loci to be distinct from that of the resistance gene (Ty-1 gene) commonly deployed in commercial tomato cultivars. Therefore, both kinds of resistance could be combined to provide improved resistance to TYLCD. Four additional TYLCD-associated viruses were challenged, showing that the resistance always prevented symptom expression, although systemic infection could occur in some cases. By using chimeric and mutant expression constructs, the C4 protein was shown to be associated with the ability to result in effective systemic infection.


Asunto(s)
Begomovirus/patogenicidad , Enfermedades de las Plantas/virología , Solanum/virología , Proteínas Virales/metabolismo , Begomovirus/genética , Begomovirus/inmunología , Resistencia a la Enfermedad , Genoma de Planta , Genotipo , Enfermedades de las Plantas/inmunología , Hojas de la Planta/virología , Solanum/genética , Solanum/inmunología
17.
Hortic Res ; 8(1): 113, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33931622

RESUMEN

Genetics of traits related to fruit cuticle deposition and composition was studied in two red-fruited tomato species. Two mapping populations derived from the cross between the cultivated tomato (Solanum lycopersicum L.) and its closest relative wild species Solanum pimpinellifolium L. were employed to conduct a QTL analysis. A combination of fruit cuticle deposition, components and anatomical traits were investigated and the individual effect of each QTL evaluated. A total of 70 QTLs were identified, indicating that all the cuticle traits analyzed have a complex polygenic nature. A combination of additive and epistatic interactions was observed for all the traits, with positive contribution of both parental lines to most of them. Colocalization of QTLs for various traits uncovered novel genomic regions producing extensive changes in the cuticle. Cuticle density emerges as an important trait since it can modulate cuticle thickness and invagination thus providing a strategy for sustaining mechanical strength without compromising palatability. Two genomic regions, located in chromosomes 1 and 12, are responsible for the negative interaction between cuticle waxes and phenolics identified in tomato fruit. Several candidate genes, including transcription factors and structural genes, are postulated and their expression analyzed throughout development.

18.
Pest Manag Sci ; 77(9): 4117-4127, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33914389

RESUMEN

BACKGROUND: Glandular trichomes are essential in plants' defence against pests however, the mechanisms of action are not completely understood. While there is considerable evidence of feeding and movement impairment by trichomes, the effect on other traits is less clear. We combined laboratory and greenhouse experiments with molecular analysis to understand how glandular trichomes affect the behavior, population growth, and the expression of biomarkers involved in detoxification, primary metabolism, and developmental pathways of the aphid Macrosiphum euphorbiae. We used two isogenic tomato lines that differ in the presence of type IV glandular trichomes and production of acylsucroses; i.e.,Solanum lycopersicum cv. 'Moneymaker' and an introgressed line from Solanum pimpinellifolium (with trichomes type IV). RESULTS: Type IV glandular trichomes affected host selection and aphid proliferation with aphids avoiding, and showing impaired multiplication on the genotype with trichomes. The exposure to type IV glandular trichomes resulted in the overexpression of detoxication markers (i.e., Hsp70, Hsp17, Hsp10); the repression of the energetic metabolism (GAPDH), and the activation of the ecdysone pathway; all these, underlying the key adaptations and metabolic trade-offs in aphids exposed to glandular trichomes. CONCLUSION: Our results demonstrate the detrimental effect of glandular trichomes (type IV) on the aphid and put forward their mode of action. Given the prevalence of glandular trichomes in wild and cultivated Solanaceae; and of the investigated molecular biomarkers in insects in general, our results provide relevant mechanisms to understand the effect of trichomes not only on herbivorous insects but also on other trophic levels.


Asunto(s)
Áfidos , Solanum lycopersicum , Solanum , Animales , Áfidos/genética , Genotipo , Solanum lycopersicum/genética , Tricomas
19.
Phytopathology ; 100(6): 582-92, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20465414

RESUMEN

Tomato chlorosis virus (ToCV) (genus Crinivirus, family Closteroviridae) is an emerging threat to tomato crops worldwide. Although symptoms on fruits are not obvious, yield losses occur through decreased fruit size and number. Control of ToCV epidemics is difficult because the virus is transmitted by several whitefly vector species and its relatively wide host range facilitates establishment in local wild reservoirs. Therefore, breeding for ToCV resistance offers the best control alternative. However, no sources for resistance are available thus far. Here, a screen of tomatoes and wild species relatives was performed in search of ToCV resistance. Two sources of resistance to ToCV were identified in this work, lines '802-11-1' and '821-13-1', each derived by two self-pollinations from ToCV asymptomatic plants of the population 'IAC CN RT' (derived from an interspecific hybrid Solanum lycopersicum x S. peruvianum accession LA0444) and accession LA1028 (S. chmielewskii), respectively. The resistance was expressed by impairing virus accumulation and disease symptom expression, both under natural infection and after challenging with ToCV in controlled inoculations. Genetic control of resistance to ToCV infection in '821-13-1' was conferred by a major locus with mainly additive effects but also partial dominance for higher susceptibility. Also, an additive x dominance epistatic interaction with at least one additional gene was evident.


Asunto(s)
Crinivirus/fisiología , Interacciones Huésped-Patógeno , Inmunidad Innata/genética , Solanum lycopersicum/virología , Solanum lycopersicum/genética , Solanum lycopersicum/inmunología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología
20.
Front Plant Sci ; 11: 585510, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33178251

RESUMEN

Tomato chlorosis virus (genus Crinivirus, family Closteroviridae) (ToCV) is rapidly emerging, causing increased damage to tomato production worldwide. The virus is transmitted in a semipersistent manner by several whitefly (Hemiptera: Aleyrodidae) species and is expanding its geographical and host ranges associated with the emergence of whiteflies of the Bemisia tabaci complex. Control is based essentially on intensive insecticide applications against the insect vector but is largely ineffective. No virus-resistant or tolerant commercial tomato cultivars are available. Recently, a B. tabaci-resistant tomato line based on the introgression of type IV leaf glandular trichomes and secretion of acylsucroses from the wild tomato Solanum pimpinellifolium was shown to effectively control the spread of tomato yellow leaf curl virus, a begomovirus (genus Begomovirus, family Geminiviridae) persistently transmitted by B. tabaci. As short acquisition and transmission periods are associated to the semipersistent transmission of ToCV, its possible control by means of the B. tabaci-resistant tomato could be compromised. Moreover, if the antixenosis effect of the resistance trait present in those tomato plants results in increased B. tabaci mobility, an increased ToCV spread might even occur. We demonstrated, however, that the use of acylsugar-producing B. tabaci-resistant tomatoes effectively controls ToCV spread compared to a near-isogenic line without type IV trichomes and acylsugar secretion. No increase in the primary ToCV spread is observed, and secondary spread could be reduced significantly decreasing the incidence of this virus. The possible use of host plant resistance to whiteflies to limit spread of ToCV opens up new alternatives for a more effective control of this virus to reduce the damage caused in tomato crops.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA