Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38257668

RESUMEN

Implantable cell replacement therapies promise to completely restore the function of neural structures, possibly changing how we currently perceive the onset of neurodegenerative diseases. One of the major clinical hurdles for the routine implementation of stem cell therapies is poor cell retention and survival, demanding the need to better understand these mechanisms while providing precise and scalable approaches to monitor these cell-based therapies in both pre-clinical and clinical scenarios. This poses significant multidisciplinary challenges regarding planning, defining the methodology and requirements, prototyping and different stages of testing. Aiming toward an optogenetic neural stem cell implant controlled by a smart wireless electronic frontend, we show how an iterative development methodology coupled with a modular design philosophy can mitigate some of these challenges. In this study, we present a miniaturized, wireless-controlled, modular multisensor platform with fully interfaced electronics featuring three different modules: an impedance analyzer, a potentiostat and an optical stimulator. We show the application of the platform for electrical impedance spectroscopy-based cell monitoring, optical stimulation to induce dopamine release from optogenetically modified neurons and a potentiostat for cyclic voltammetry and amperometric detection of dopamine release. The multisensor platform is designed to be used as an opto-electric headstage for future in vivo animal experiments.


Asunto(s)
Experimentación Animal , Dopamina , Animales , Optogenética , Encéfalo , Prótesis e Implantes
2.
Opt Lett ; 48(2): 460-463, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36638483

RESUMEN

Continuously variable true-time optical delay lines are typically subject to a constraint of the bandwidth-delay product, limiting their use in several applications. In this Letter, we propose an integrated topology that breaks the bandwidth-delay product limit. The device is based on multiple Mach-Zehnder Interferometers (MZIs) arranged in parallel, providing easier control and a larger bandwidth compared to ring resonator-based solutions. The functionality of this architecture is demonstrated with a 4-stage delay line by performing measurements in both the time and frequency domains. The delay line introduces a delay of 90 ps over a bandwidth of more than 22 GHz with a negligible group delay distortion, operates on a wavelength range of about 60 nm, and is scalable to a higher number of MZI stages.

3.
Opt Express ; 30(15): 26628-26638, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-36236851

RESUMEN

We demonstrate a temperature and wavelength shift resilient silicon transmission and routing interconnect system suitable for multi-socket interconnects, utilizing a dual-strategy CLIPP feedback circuitry that safeguards the operating point of the constituent photonic building blocks along the entire on-chip transmission-multiplexing-routing chain. The control circuit leverages a novel control power-independent and calibration-free locking strategy that exploits the 2nd derivative of ring resonator modulators (RMs) transfer function to lock them close to the point of minimum transmission penalty. The system performance was evaluated on an integrated Silicon Photonics 2-socket demonstrator, enforcing control over a chain of RM-MUX-AWGR resonant structures and stressed against thermal and wavelength shift perturbations. The thermal and wavelength stress tests ranged from 27°C to 36°C and 1309.90 nm to 1310.85 nm and revealed average eye diagrams Q-factor values of 5.8 and 5.9 respectively, validating the system robustness to unstable environments and fabrication variations.

4.
Opt Lett ; 47(6): 1327-1330, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35290305

RESUMEN

On-chip optical power monitors are essential elements to calibrate, stabilize, and reconfigure photonic integrated circuits. Many applications require in-line waveguide detectors, where a trade-off has to be found between large sensitivity and high transparency to the guided light. In this work, we demonstrate a transparent photoconductor integrated on standard low-doped silicon-on-insulator waveguides that reaches a photoconductive gain of more than 106 and an in-line sensitivity as high as -60 dBm. This performance is achieved by compensating the effect of electric charges in the cladding oxide through a bias voltage applied to the chip substrate or locally through a gate electrode on top of the waveguide, allowing one to tune on demand the conductivity of the core to the optimum level.

5.
Opt Lett ; 47(10): 2598-2601, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35561410

RESUMEN

Visible-light integrated photonics is emerging as a promising technology for the realization of optical devices for applications in sensing, quantum information and communications, imaging, and displays. Among the existing photonic platforms, high-index-contrast silicon nitride (Si3N4) waveguides offer broadband transparency in the visible spectral range and a high scale of integration. As the complexity of photonic integrated circuits (PICs) increases, on-chip detectors are required to monitor their working point for reconfiguration and stabilization operations. In this Letter, we present a semi-transparent in-line power monitor integrated on Si3N4 waveguides that operates in the red-light wavelength range (660 nm). The proposed device exploits the photoconductivity of a hydrogenated amorphous-silicon (a-Si:H) film that is evanescently coupled to an optical waveguide. Experimental results show a responsivity of 30 mA/W, a sensitivity of -45 dBm, and a sub-µs time response. These features enable the use of the proposed photoconductor for high-sensitivity monitoring and control of visible-light Si3N4 PICs.

6.
Biotechnol Bioeng ; 119(4): 1129-1141, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34984673

RESUMEN

The search for new rapid diagnostic tests for malaria is a priority for developing an efficient strategy to fight this endemic disease, which affects more than 3 billion people worldwide. In this study, we characterize systematically an easy-to-operate lab-on-chip, designed for the magnetophoretic capture of malaria-infected red blood cells (RBCs). The method relies on the positive magnetic susceptibility of infected RBCs with respect to blood plasma. A matrix of nickel posts fabricated in a silicon chip placed face down is aimed at attracting infected cells, while healthy cells sediment on a glass slide under the action of gravity. Using a model of infected RBCs, that is, erythrocytes with methemoglobin, we obtained a capture efficiency of about 70% after 10 min in static conditions. By proper agitation, the capture efficiency reached 85% after just 5 min. Sample preparation requires only a 1:10 volume dilution of whole blood, previously treated with heparin, in a phosphate-buffered solution. Nonspecific attraction of untreated RBCs was not observed in the same time interval.


Asunto(s)
Eritrocitos , Malaria , Humanos , Magnetismo , Malaria/diagnóstico
7.
Econ Theory ; : 1-26, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36573250

RESUMEN

We propose and solve an optimal vaccination problem within a deterministic compartmental model of SIRS type: the immunized population can become susceptible again, e.g. because of a not complete immunization power of the vaccine. A social planner thus aims at reducing the number of susceptible individuals via a vaccination campaign, while minimizing the social and economic costs related to the infectious disease. As a theoretical contribution, we provide a technical non-smooth verification theorem, guaranteeing that a semiconcave viscosity solution to the Hamilton-Jacobi-Bellman equation identifies with the minimal cost function, provided that the closed-loop equation admits a solution. Conditions under which the closed-loop equation is well-posed are then derived by borrowing results from the theory of Regular Lagrangian Flows. From the applied point of view, we provide a numerical implementation of the model in a case study with quadratic instantaneous costs. Amongst other conclusions, we observe that in the long-run the optimal vaccination policy is able to keep the percentage of infected to zero, at least when the natural reproduction number and the reinfection rate are small.

8.
Opt Lett ; 46(1): 17-20, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33362002

RESUMEN

Many optoelectronic devices embedded in a silicon photonic chip, like photodetectors, modulators, and attenuators, rely on waveguide doping for their operation. However, the doping level of a waveguide is not always reflecting in an equal amount of free carriers available for conduction because of the charges and trap energy states inevitably present at the Si/SiO2 interface. In a silicon-on-insulator technology with 1015cm-3p-doped native waveguides, this can lead to a complete depletion of the core from free carriers and to a consequently very high electrical resistance. This Letter experimentally quantifies this effect and shows how the amount of free carriers in a waveguide can be modified and restored to the original doping value with a proper control of the chip substrate potential. A similar capability is also demonstrated by means of a specific metal gate integrated above the waveguide that allows fine control of the conductance with high locality level. This paper highlights the linearity achievable in the conductance modulation that can be exploited in a number of possible applications.

9.
J Math Econ ; 93: 102453, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33324027

RESUMEN

We study the problem of a policymaker who aims at taming the spread of an epidemic while minimizing its associated social costs. The main feature of our model lies in the fact that the disease's transmission rate is a diffusive stochastic process whose trend can be adjusted via costly confinement policies. We provide a complete theoretical analysis, as well as numerical experiments illustrating the structure of the optimal lockdown policy. In all our experiments the latter is characterized by three distinct periods: the epidemic is first let to freely evolve, then vigorously tamed, and finally a less stringent containment should be adopted. Moreover, the optimal containment policy is such that the product "reproduction number × percentage of susceptible" is kept after a certain date strictly below the critical level of one, although the reproduction number is let to oscillate above one in the last more relaxed phase of lockdown. Finally, an increase in the fluctuations of the transmission rate is shown to give rise to an earlier beginning of the optimal lockdown policy, which is also diluted over a longer period of time.

10.
Anal Bioanal Chem ; 412(24): 6371-6380, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32451643

RESUMEN

Evaluation and understanding the effect of drug delivery in in vitro systems is fundamental in drug discovery. We present an assay based on real-time electrical impedance spectroscopy (EIS) measurements that can be used to follow the internalisation and cytotoxic effect of a matrix metalloproteinase (MMP)-sensitive liposome formulation loaded with oxaliplatin (OxPt) on colorectal cancer cells. The EIS response identified two different cellular processes: (i) a negative peak in the cell index (CI) within the first 5 h, due to onset of liposome endocytosis, followed by (ii) a subsequent CI increase, due to the reattachment of cells until the onset of cytotoxicity with a decrease in CI. Free OxPt or OxPt-loaded Stealth liposomes did not show this two-stage EIS response; the latter can be due to the fact that Stealth cannot be cleaved by MMPs and thus is not taken up by the cells. Real-time bright-field imaging supported the EIS data, showing variations in cell adherence and cell morphology after exposure to the different liposome formulations. A drastic decrease in cell coverage as well as rounding up of cells during the first 5 h of exposure to OxPt-loaded (MMP)-sensitive liposome formulation is reflected by the first negative EIS response, which indicates the onset of liposome endocytosis. Graphical abstract.


Asunto(s)
Antineoplásicos/administración & dosificación , Endocitosis , Liposomas , Oxaliplatino/administración & dosificación , Antineoplásicos/farmacología , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Espectroscopía Dieléctrica , Humanos , Oxaliplatino/farmacología
11.
Sensors (Basel) ; 20(17)2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32887406

RESUMEN

The development of innovative diagnostic tests is fundamental in the route towards malaria eradication. Here, we discuss the sorting capabilities of an innovative test for malaria which allows the quantitative and rapid detection of all malaria species. The physical concept of the test exploits the paramagnetic property of infected erythrocytes and hemozoin crystals, the magnetic fingerprints of malaria common to all species, which allows them to undergo a selective magnetophoretic separation driven by a magnetic field gradient in competition with gravity. Upon separation, corpuscles concentrate at the surface of a silicon microchip where interdigitated electrodes are placed in close proximity to magnetic concentrators. The impedance variation proportional to the amount of attracted particles is then measured. The capability of our test to perform the selective detection of infected erythrocytes and hemozoin crystals has been tested by means of capture experiments on treated bovine red blood cells, mimicking the behavior of malaria-infected ones, and suspensions of synthetic hemozoin crystals. Different configuration angles of the chip with respect to gravity force and different thicknesses of the microfluidic chamber containing the blood sample have been investigated experimentally and by multiphysics simulations. In the paper, we describe the optimum conditions leading to maximum sensitivity and specificity of the test.


Asunto(s)
Hemoproteínas , Magnetismo , Malaria , Animales , Bovinos , Eritrocitos , Fenómenos Magnéticos , Malaria/diagnóstico , Fenómenos Físicos
12.
Anal Chem ; 91(18): 11620-11628, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31335122

RESUMEN

Interfacing electrochemical sensors in a lab-on-a-disc (LoD) system with a potentiostat is often tedious and challenging. We here present the first multichannel, modular, lightweight, and wirelessly powered, custom-built potentiostat-on-a-disc (PoD) for centrifugal microfluidic applications. The developed potentiostat is in the form factor of a typical digital video disc (DVD) and weighs only 127 g. The design of the potentiostat facilitates easy and robust interfacing with the electrodes in the LoD system, while enabling real-time electrochemical detection during rotation. The device can perform different electroanalytical techniques such as cyclic voltammetry, square wave voltammetry, and amperometry while being controlled by custom-made software. Measurements were conducted with and without rotation using both in-house fabricated and commercial electrodes. The performance of the PoD was in good agreement with the results obtained using a commercial potentiostat with a measured current resolution of 200 pA. As a proof of concept, we performed a real-time release study of an electrochemically active compound from microdevices used for drug delivery.

13.
J Environ Manage ; 250: 109503, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31525699

RESUMEN

Soil and sediment contamination is recognised as one of the most relevant environmental problems caused by past industrial activities and unsustainable waste disposal practices, highlighting the need to develop or improve effective remediation techniques to support sustainable management strategies. In this context, the remediation of sediments dredged from the Mincio river (Italy) contaminated by mercury and heavy hydrocarbons (C12-40) was carried out by applying and implementing the High Performance Solidification/Stabilization technology, aimed at producing safe and reusable cement-based granular materials. The technology was improved by decreasing both the temperature and time of the thermal desorption treatment (from 280 to 110 °C and from 4-16 h to 70 min, respectively) and by including a wet conditioning step to the process. Temperature and time reduction allowed to diminish the degradation of the cementitious phases of the granules (usually related to the high temperatures employed in the process), while the wet conditioning step allowed to improve their mechanical properties, as well as to further reduce the leaching of contaminants. The physical-chemical properties of the granules and contaminant leaching in water were investigated by Inductively Coupled Plasma Mass and Optical Emission Spectrometry, Ultraviolet-Visible spectroscopy, Gas Chromatography, X-Ray Powder Diffraction, and Scanning Electron Microscopy, in order to identify the optimal parameters for both thermal and wet conditioning processes. The overall results showed that the use of consecutive thermal and wet conditioning treatment on sedimentary cementitious materials from the High Performance Solidification/Stabilization technology led to the removal of volatile pollutants and to the improvement of granule quality, thus providing a final material that satisfied all the Italian regulatory requirements for reuse. Therefore, the findings obtained in this study may contribute to the development of sustainable management strategies for contaminated soils and sediments, leading to their valorisation through the transformation into reusable materials.


Asunto(s)
Eliminación de Residuos , Contaminantes del Suelo , Cromatografía de Gases y Espectrometría de Masas , Italia , Ríos , Suelo
14.
Small ; 12(7): 921-9, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26707363

RESUMEN

Methods for the manipulation of single magnetic particles have become very interesting, in particular for in vitro biological studies. Most of these studies require an external microscope to provide the operator with feedback for controlling the particle motion, thus preventing the use of magnetic particles in high-throughput experiments. In this paper, a simple and compact system with integrated electrical feedback is presented, implementing in the very same device both the manipulation and detection of the transit of single particles. The proposed platform is based on zig-zag shaped magnetic nanostructures, where transverse magnetic domain walls are pinned at the corners and attract magnetic particles in suspension. By applying suitable external magnetic fields, the domain walls move to the nearest corner, thus causing the step by step displacement of the particles along the nanostructure. The very same structure is also employed for detecting the bead transit. Indeed, the presence of the magnetic particle in suspension over the domain wall affects the depinning field required for its displacement. This characteristic field can be monitored through anisotropic magnetoresistance measurements, thus implementing an integrated electrical feedback of the bead transit. In particular, the individual manipulation and detection of single 1-µm sized beads is demonstrated.


Asunto(s)
Electricidad , Retroalimentación , Magnetismo/métodos , Simulación por Computador , Dimetilpolisiloxanos/química , Microscopía
15.
Faraday Discuss ; 193: 459-470, 2016 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-27711887

RESUMEN

Glass or quartz nanopipettes have found increasing use as tools for studying the biophysical properties of DNA and proteins, and as sensor devices. The ease of fabrication, favourable wetting properties and low capacitance are some of the inherent advantages, for example compared to more conventional, silicon-based nanopore chips. Recently, we have demonstrated high-bandwidth detection of double-stranded (ds) DNA with microsecond time resolution in nanopipettes, using custom-designed electronics. The electronics design has now been refined to include more sophisticated control features, such as integrated bias reversal and other features. Here, we exploit these capabilities and probe the translocation of short dsDNA in the 100 bp range, in different electrolytes. Single-stranded (ss) DNA of similar length are in use as capture probes, so label-free detection of their ds counterparts could therefore be of relevance in disease diagnostics.


Asunto(s)
ADN/análisis , Nanotecnología , Vidrio , Cuarzo
16.
Phys Chem Chem Phys ; 18(45): 31154-31159, 2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-27812576

RESUMEN

The dipole moment of photochromic diarylethenes is determined in solution for both the coloured and uncoloured forms by measuring the capacitance of a capacitor filled with a photochromic solution as a dielectric material. Diarylethenes with different substituents are investigated and the modulation of the dipole moment is related to their chemical structures. We determine a modulation of the dipole moment up to 4 Debye. We discuss the model used to obtain the dipole moment from the capacitance measurements and we compare the experimental results with the outcomes from DFT calculations. The results highlight the importance of conformational effects in the description of the dipole moment of diarylethenes.

17.
Nano Lett ; 15(11): 7245-52, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26479330

RESUMEN

The authors report on the reduction of low-frequency noise in semiconductor polymer nanowires with respect to thin-films made of the same organic material. Flicker noise is experimentally investigated in polymer nanowires in the range of 10-10(5) Hz by means of field-effect transistor architectures. The noise in the devices is well described by the Hooge empirical model and exhibits an average Hooge constant, which describes the current power spectral density of fluctuations, suppressed by 1-2 orders of magnitude compared to thin-film devices. To explain the Hooge constant reduction, a resistor network model is developed, in which the organic semiconducting nanostructures or films are depicted through a two-dimensional network of resistors with a square-lattice structure, accounting for the different anisotropy and degree of structural disorder of the active nanowires and films. Results from modeling agree well with experimental findings. These results support enhanced structural order through size-confinement in organic nanostructures as effective route to improve the noise performance in polymer electronic devices.

18.
Anal Chem ; 87(4): 2204-12, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25582124

RESUMEN

In this work, we have developed a microfluidic cytotoxicity assay for a cell culture and detection platform, which enables both fluid handling and electrochemical/optical detection. The cytotoxic effect of anticancer drugs doxorubicin (DOX), oxaliplatin (OX) as well as OX-loaded liposomes, developed for targeted drug delivery, was evaluated using real-time impedance monitoring. The time-dependent effect of DOX on HeLa cells was monitored and found to have a delayed onset of cytotoxicity in microfluidics compared with static culture conditions based on data obtained in our previous study. The result of a fluorescent microscopic annexin V/propidium iodide assay, performed in microfluidics, confirmed the outcome of the real-time impedance assay. In addition, the response of HeLa cells to OX-induced cytotoxicity proved to be slower than toxicity induced by DOX. A difference in the time-dependent cytotoxic response of fibrosarcoma cells (HT1080) to free OX and OX-loaded liposomes was observed and attributed to incomplete degradation of the liposomes, which results in lower drug availability. The matrix metalloproteinase (MMP)-dependent release of OX from OX-loaded liposomes was also confirmed using laryngopharynx carcinoma cells (FaDu). The comparison and the observed differences between the cytotoxic effects under microfluidic and static conditions highlight the importance of comparative studies as basis for implementation of microfluidic cytotoxic assays.


Asunto(s)
Antineoplásicos/farmacología , Doxorrubicina/farmacología , Liposomas/química , Técnicas Analíticas Microfluídicas , Compuestos Organoplatinos/farmacología , Antineoplásicos/química , Muerte Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Doxorrubicina/química , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Técnicas Analíticas Microfluídicas/instrumentación , Compuestos Organoplatinos/química , Oxaliplatino , Relación Estructura-Actividad , Células Tumorales Cultivadas
19.
Environ Pollut ; 345: 123455, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38301818

RESUMEN

Ordinary Portland cement (OPC) is a cost-effective and conventional binder that is widely adopted in brownfield site remediation and redevelopment. However, the substantial carbon dioxide emission during OPC production and the concerns about its undesirable retention capacity for potentially toxic elements strain this strategy. To tackle this objective, we herein tailored four alternative binders (calcium aluminate cement, OPC-activated ground-granulated blast-furnace slag (GGBFS), white-steel-slag activated GGBFS, and alkaline-activated GGBFS) for facilitating immobilization of high Pb content pyrite ash, with the perspectives of enhancing Pb retention and mitigating anthropogenic carbon dioxide emissions. The characterizations revealed that the incorporation of white steel slag efficiently benefits the activity of GGBFS, herein facilitating the hydration products (mainly ettringite and calcium silicate hydrates) precipitation and Pb immobilization. Further, we quantified the cradle-to-gate carbon footprint and cost analysis attributed to each binder-Pb contaminants system, finding that the application of these alternative binders could be pivotal in the envisaged carbon-neutral world if the growth of the OPC-free roadmap continues. The findings suggest that the synergistic use of recycled white steel slag and GGBFS can be proposed as a profitable and sustainable OPC-free candidate to facilitate the management of lead-contaminated brownfield sites. The overall results underscore the potential immobilization mechanisms of Pb in multiple OPC-free/substitution binder systems and highlight the urgent need to bridge the zero-emission insights to sustainable in-situ solidification/stabilization technologies.


Asunto(s)
Dióxido de Carbono , Ceniza del Carbón , Hierro , Sulfuros , Plomo , Acero
20.
Mol Ecol ; 22(8): 2157-72, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23480613

RESUMEN

The assessment of marine environmental health is a complex but fundamental task both for ecosystem conservation and food safety related to the human consumption of marine products. Manila clams inhabiting the Venice Lagoon constitute an excellent case study for evaluating the effects of complex mixtures of industrial and urban effluents on aquatic organisms. Clams were collected in different seasons at four locations within the Venice Lagoon. The sampling sites were characterized by a range of pollutant concentrations and included Porto Marghera, a highly polluted industrial area where clam harvesting for human consumption is strictly forbidden. Pooled soft tissues were subjected to mass spectroscopy analysis to measure the concentrations of PCDDs/PCDFs/PCBs-DL, PCBs, PBDEs, HCB and PAHs, and pooled digestive gland samples were used for gene expression profiling. While seasonal variation was found to be responsible for the largest proportion of transcriptional changes, significance analysis of microarrays quantitative correlation analysis identified 162 transcripts that were correlated with at least one class of chemicals measured in the samples from the four different sampling sites. Prediction Analysis of Microarrays (PAM) identified a minimal set of seven genes that correctly assigned samples collected in the restricted polluted area (Porto Marghera), independent of the season in which they were collected. An integrated approach combining transcriptomics and chemical analyses of the Manila clam provided a global picture of how Manila clams respond to complex mixtures of xenobiotics and their interplay with other biotic and abiotic factors. We were also able to identify gene expression signatures for different classes of chemicals and a set of robust biomarkers of exposure to these chemicals.


Asunto(s)
Bivalvos/genética , Ecosistema , Hepatopáncreas/efectos de los fármacos , Contaminación Química del Agua , Animales , Bivalvos/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Sustancias Peligrosas/aislamiento & purificación , Hepatopáncreas/metabolismo , Humanos , Bifenilos Policlorados/aislamiento & purificación , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA