Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(27): e2202310119, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35759674

RESUMEN

Human activities pose a major threat to tropical forest biodiversity and ecosystem services. Although the impacts of deforestation are well studied, multiple land-use and land-cover transitions (LULCTs) occur in tropical landscapes, and we do not know how LULCTs differ in their rates or impacts on key ecosystem components. Here, we quantified the impacts of 18 LULCTs on three ecosystem components (biodiversity, carbon, and soil), based on 18 variables collected from 310 sites in the Brazilian Amazon. Across all LULCTs, biodiversity was the most affected ecosystem component, followed by carbon stocks, but the magnitude of change differed widely among LULCTs and individual variables. Forest clearance for pasture was the most prevalent and high-impact transition, but we also identified other LULCTs with high impact but lower prevalence (e.g., forest to agriculture). Our study demonstrates the importance of considering multiple ecosystem components and LULCTs to understand the consequences of human activities in tropical landscapes.


Asunto(s)
Efectos Antropogénicos , Biodiversidad , Conservación de los Recursos Naturales , Bosque Lluvioso , Agricultura , Brasil , Carbono , Humanos
2.
Nature ; 559(7715): 517-526, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30046075

RESUMEN

The tropics contain the overwhelming majority of Earth's biodiversity: their terrestrial, freshwater and marine ecosystems hold more than three-quarters of all species, including almost all shallow-water corals and over 90% of terrestrial birds. However, tropical ecosystems are also subject to pervasive and interacting stressors, such as deforestation, overfishing and climate change, and they are set within a socio-economic context that includes growing pressure from an increasingly globalized world, larger and more affluent tropical populations, and weak governance and response capacities. Concerted local, national and international actions are urgently required to prevent a collapse of tropical biodiversity.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/tendencias , Clima Tropical , Animales , Cambio Climático , Actividades Humanas , Plantas , Factores Socioeconómicos
3.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34282005

RESUMEN

With humanity facing an unprecedented climate crisis, the conservation of tropical forests has never been so important - their vast terrestrial carbon stocks can be turned into emissions by climatic and human disturbances. However, the duration of these effects is poorly understood, and it is unclear whether impacts are amplified in forests with a history of previous human disturbance. Here, we focus on the Amazonian epicenter of the 2015-16 El Niño, a region that encompasses 1.2% of the Brazilian Amazon. We quantify, at high temporal resolution, the impacts of an extreme El Niño (EN) drought and extensive forest fires on plant mortality and carbon loss in undisturbed and human-modified forests. Mortality remained higher than pre-El Niño levels for 36 mo in EN-drought-affected forests and for 30 mo in EN-fire-affected forests. In EN-fire-affected forests, human disturbance significantly increased plant mortality. Our investigation of the ecological and physiological predictors of tree mortality showed that trees with lower wood density, bark thickness and leaf nitrogen content, as well as those that experienced greater fire intensity, were more vulnerable. Across the region, the 2015-16 El Niño led to the death of an estimated 2.5 ± 0.3 billion stems, resulting in emissions of 495 ± 94 Tg CO2 Three years after the El Niño, plant growth and recruitment had offset only 37% of emissions. Our results show that limiting forest disturbance will not only help maintain carbon stocks, but will also maximize the resistance of Amazonian forests if fires do occur.


Asunto(s)
Ciclo del Carbono , Sequías , El Niño Oscilación del Sur , Agricultura Forestal/estadística & datos numéricos , Fenómenos Fisiológicos de las Plantas , Árboles/crecimiento & desarrollo , Incendios Forestales , Brasil , Bosques , Humanos
4.
Nature ; 535(7610): 144-7, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27362236

RESUMEN

Concerted political attention has focused on reducing deforestation, and this remains the cornerstone of most biodiversity conservation strategies. However, maintaining forest cover may not reduce anthropogenic forest disturbances, which are rarely considered in conservation programmes. These disturbances occur both within forests, including selective logging and wildfires, and at the landscape level, through edge, area and isolation effects. Until now, the combined effect of anthropogenic disturbance on the conservation value of remnant primary forests has remained unknown, making it impossible to assess the relative importance of forest disturbance and forest loss. Here we address these knowledge gaps using a large data set of plants, birds and dung beetles (1,538, 460 and 156 species, respectively) sampled in 36 catchments in the Brazilian state of Pará. Catchments retaining more than 69­80% forest cover lost more conservation value from disturbance than from forest loss. For example, a 20% loss of primary forest, the maximum level of deforestation allowed on Amazonian properties under Brazil's Forest Code, resulted in a 39­54% loss of conservation value: 96­171% more than expected without considering disturbance effects. We extrapolated the disturbance-mediated loss of conservation value throughout Pará, which covers 25% of the Brazilian Amazon. Although disturbed forests retained considerable conservation value compared with deforested areas, the toll of disturbance outside Pará's strictly protected areas is equivalent to the loss of 92,000­139,000 km2 of primary forest. Even this lowest estimate is greater than the area deforested across the entire Brazilian Amazon between 2006 and 2015 (ref. 10). Species distribution models showed that both landscape and within-forest disturbances contributed to biodiversity loss, with the greatest negative effects on species of high conservation and functional value. These results demonstrate an urgent need for policy interventions that go beyond the maintenance of forest cover to safeguard the hyper-diversity of tropical forest ecosystems.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/estadística & datos numéricos , Bosques , Actividades Humanas , Clima Tropical , Animales , Aves/fisiología , Brasil , Escarabajos/fisiología , Incendios/estadística & datos numéricos , Agricultura Forestal/estadística & datos numéricos , Plantas
5.
Glob Chang Biol ; 26(12): 7006-7020, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32969561

RESUMEN

Secondary forests are increasing in the Brazilian Amazon and have been cited as an important mechanism for reducing net carbon emissions. However, our understanding of the contribution of secondary forests to the Amazonian carbon balance is incomplete, and it is unclear to what extent emissions from old-growth deforestation have been offset by secondary forest growth. Using MapBiomas 3.1 and recently refined IPCC carbon sequestration estimates, we mapped the age and extent of secondary forests in the Brazilian Amazon and estimated their role in offsetting old-growth deforestation emissions since 1985. We also assessed whether secondary forests in the Brazilian Amazon are growing in conditions favourable for carbon accumulation in relation to a suite of climatic, landscape and local factors. In 2017, the 129,361 km2 of secondary forest in the Brazilian Amazon stored 0.33 ± 0.05 billion Mg of above-ground carbon but had offset just 9.37% of old-growth emissions since 1985. However, we find that the majority of Brazilian secondary forests are situated in contexts that are less favourable for carbon accumulation than the biome average. Our results demonstrate that old-growth forest loss remains the most important factor determining the carbon balance in the Brazilian Amazon. Understanding the implications of these findings will be essential for improving estimates of secondary forest carbon sequestration potential. More accurate quantification of secondary forest carbon stocks will support the production of appropriate management proposals that can efficiently harness the potential of secondary forests as a low-cost, nature-based tool for mitigating climate change.


Asunto(s)
Carbono , Conservación de los Recursos Naturales , Brasil , Carbono/análisis , Secuestro de Carbono , Bosques
6.
Glob Chang Biol ; 24(12): 5680-5694, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30216600

RESUMEN

Secondary forests (SFs) regenerating on previously deforested land account for large, expanding areas of tropical forest cover. Given that tropical forests rank among Earth's most important reservoirs of carbon and biodiversity, SFs play an increasingly pivotal role in the carbon cycle and as potential habitat for forest biota. Nevertheless, their capacity to regain the biotic attributes of undisturbed primary forests (UPFs) remains poorly understood. Here, we provide a comprehensive assessment of SF recovery, using extensive tropical biodiversity, biomass, and environmental datasets. These data, collected in 59 naturally regenerating SFs and 30 co-located UPFs in the eastern Amazon, cover >1,600 large- and small-stemmed plant, bird, and dung beetles species and a suite of forest structure, landscape context, and topoedaphic predictors. After up to 40 years of regeneration, the SFs we surveyed showed a high degree of biodiversity resilience, recovering, on average among taxa, 88% and 85% mean UPF species richness and composition, respectively. Across the first 20 years of succession, the period for which we have accurate SF age data, biomass recovered at 1.2% per year, equivalent to a carbon uptake rate of 2.25 Mg/ha per year, while, on average, species richness and composition recovered at 2.6% and 2.3% per year, respectively. For all taxonomic groups, biomass was strongly associated with SF species distributions. However, other variables describing habitat complexity-canopy cover and understory stem density-were equally important occurrence predictors for most taxa. Species responses to biomass revealed a successional transition at approximately 75 Mg/ha, marking the influx of high-conservation-value forest species. Overall, our results show that naturally regenerating SFs can accumulate substantial amounts of carbon and support many forest species. However, given that the surveyed SFs failed to return to a typical UPF state, SFs are not substitutes for UPFs.


Asunto(s)
Biodiversidad , Biomasa , Bosques , Animales , Aves/fisiología , Ciclo del Carbono , Escarabajos/fisiología , Conservación de los Recursos Naturales , Conjuntos de Datos como Asunto , Ecosistema , Árboles , Clima Tropical
7.
Glob Chang Biol ; 22(1): 92-109, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26390852

RESUMEN

Tropical forests harbor a significant portion of global biodiversity and are a critical component of the climate system. Reducing deforestation and forest degradation contributes to global climate-change mitigation efforts, yet emissions and removals from forest dynamics are still poorly quantified. We reviewed the main challenges to estimate changes in carbon stocks and biodiversity due to degradation and recovery of tropical forests, focusing on three main areas: (1) the combination of field surveys and remote sensing; (2) evaluation of biodiversity and carbon values under a unified strategy; and (3) research efforts needed to understand and quantify forest degradation and recovery. The improvement of models and estimates of changes of forest carbon can foster process-oriented monitoring of forest dynamics, including different variables and using spatially explicit algorithms that account for regional and local differences, such as variation in climate, soil, nutrient content, topography, biodiversity, disturbance history, recovery pathways, and socioeconomic factors. Generating the data for these models requires affordable large-scale remote-sensing tools associated with a robust network of field plots that can generate spatially explicit information on a range of variables through time. By combining ecosystem models, multiscale remote sensing, and networks of field plots, we will be able to evaluate forest degradation and recovery and their interactions with biodiversity and carbon cycling. Improving monitoring strategies will allow a better understanding of the role of forest dynamics in climate-change mitigation, adaptation, and carbon cycle feedbacks, thereby reducing uncertainties in models of the key processes in the carbon cycle, including their impacts on biodiversity, which are fundamental to support forest governance policies, such as Reducing Emissions from Deforestation and Forest Degradation.


Asunto(s)
Biodiversidad , Ciclo del Carbono , Carbono , Bosques , Cambio Climático , Conservación de los Recursos Naturales , Ecosistema , Agricultura Forestal/métodos , Modelos Teóricos , Clima Tropical
8.
Oecologia ; 180(3): 903-16, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26566810

RESUMEN

As humans continue to alter tropical landscapes across the world, it is important to understand what environmental factors help determine the persistence of biodiversity in modified ecosystems. Studies on well-known taxonomic groups can offer critical insights as to the fate of biodiversity in these modified systems. Here we investigated species-specific responses of 44 forest-associated bird species with different behavioural traits to forest disturbance in 171 transects distributed across 31 landscapes in two regions of the eastern Brazilian Amazon. We investigated patterns of species occurrence in primary forests varyingly disturbed by selective-logging and fire and examined the relative importance of local, landscape and historical environmental variables in determining species occurrences. Within undisturbed and disturbed primary forest transects, we found that distance to forest edge and the biomass of large trees were the most important predictors driving the occurrence of individual species. However, we also found considerable variation in species responses to different environmental variables as well as inter-regional variation in the responses of the same species to the same environmental variables. We advocate the utility of using species-level analyses to complement community-wide responses in order to uncover highly variable and species-specific responses to environmental change that remain so poorly understood.


Asunto(s)
Distribución Animal , Biodiversidad , Aves , Ambiente , Bosques , Árboles , Animales , Biomasa , Brasil , Incendios , Humanos , Especificidad de la Especie , Clima Tropical
9.
Ecol Lett ; 18(10): 1108-18, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26299405

RESUMEN

Land-cover change and ecosystem degradation may lead to biotic homogenization, yet our understanding of this phenomenon over large spatial scales and different biotic groups remains weak. We used a multi-taxa dataset from 335 sites and 36 heterogeneous landscapes in the Brazilian Amazon to examine the potential for landscape-scale processes to modulate the cumulative effects of local disturbances. Biotic homogenization was high in production areas but much less in disturbed and regenerating forests, where high levels of among-site and among-landscape ß-diversity appeared to attenuate species loss at larger scales. We found consistently high levels of ß-diversity among landscapes for all land cover classes, providing support for landscape-scale divergence in species composition. Our findings support concerns that ß-diversity has been underestimated as a driver of biodiversity change and underscore the importance of maintaining a distributed network of reserves, including remaining areas of undisturbed primary forest, but also disturbed and regenerating forests, to conserve regional biota.


Asunto(s)
Biodiversidad , Bosques , Clima Tropical , Agricultura , Animales , Aves , Brasil , Conservación de los Recursos Naturales , Insectos
10.
Proc Biol Sci ; 281(1795)2014 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-25274363

RESUMEN

Road building can lead to significant deleterious impacts on biodiversity, varying from direct road-kill mortality and direct habitat loss associated with road construction, to more subtle indirect impacts from edge effects and fragmentation. However, little work has been done to evaluate the specific effects of road networks and biodiversity loss beyond the more generalized effects of habitat loss. Here, we compared forest bird species richness and composition in the municipalities of Santarém and Belterra in Pará state, eastern Brazilian Amazon, with a road network metric called 'roadless volume (RV)' at the scale of small hydrological catchments (averaging 3721 ha). We found a significant positive relationship between RV and both forest bird richness and the average number of unique species (species represented by a single record) recorded at each site. Forest bird community composition was also significantly affected by RV. Moreover, there was no significant correlation between RV and forest cover, suggesting that road networks may impact biodiversity independently of changes in forest cover. However, variance partitioning analysis indicated that RV has partially independent and therefore additive effects, suggesting that RV and forest cover are best used in a complementary manner to investigate changes in biodiversity. Road impacts on avian species richness and composition independent of habitat loss may result from road-dependent habitat disturbance and fragmentation effects that are not captured by total percentage habitat cover, such as selective logging, fire, hunting, traffic disturbance, edge effects and road-induced fragmentation.


Asunto(s)
Biodiversidad , Aves/fisiología , Conservación de los Recursos Naturales/métodos , Transportes , Animales , Brasil , Ecosistema
11.
Glob Chang Biol ; 20(12): 3713-26, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24865818

RESUMEN

Tropical rainforests store enormous amounts of carbon, the protection of which represents a vital component of efforts to mitigate global climate change. Currently, tropical forest conservation, science, policies, and climate mitigation actions focus predominantly on reducing carbon emissions from deforestation alone. However, every year vast areas of the humid tropics are disturbed by selective logging, understory fires, and habitat fragmentation. There is an urgent need to understand the effect of such disturbances on carbon stocks, and how stocks in disturbed forests compare to those found in undisturbed primary forests as well as in regenerating secondary forests. Here, we present the results of the largest field study to date on the impacts of human disturbances on above and belowground carbon stocks in tropical forests. Live vegetation, the largest carbon pool, was extremely sensitive to disturbance: forests that experienced both selective logging and understory fires stored, on average, 40% less aboveground carbon than undisturbed forests and were structurally similar to secondary forests. Edge effects also played an important role in explaining variability in aboveground carbon stocks of disturbed forests. Results indicate a potential rapid recovery of the dead wood and litter carbon pools, while soil stocks (0-30 cm) appeared to be resistant to the effects of logging and fire. Carbon loss and subsequent emissions due to human disturbances remain largely unaccounted for in greenhouse gas inventories, but by comparing our estimates of depleted carbon stocks in disturbed forests with Brazilian government assessments of the total forest area annually disturbed in the Amazon, we show that these emissions could represent up to 40% of the carbon loss from deforestation in the region. We conclude that conservation programs aiming to ensure the long-term permanence of forest carbon stocks, such as REDD+, will remain limited in their success unless they effectively avoid degradation as well as deforestation.


Asunto(s)
Ciclo del Carbono/fisiología , Secuestro de Carbono/fisiología , Conservación de los Recursos Naturales/estadística & datos numéricos , Agricultura Forestal/estadística & datos numéricos , Bosques , Modelos Biológicos , Suelo/química , Brasil , Simulación por Computador , Conservación de los Recursos Naturales/métodos , Incendios , Clima Tropical
12.
Conserv Biol ; 28(5): 1271-81, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24779443

RESUMEN

Local, regional, and global extinctions caused by habitat loss, degradation, and fragmentation have been widely reported for the tropics. The patterns and drivers of this loss of species are now increasingly well known in Amazonia, but there remains a significant gap in understanding of long-term trends in species persistence and extinction in anthropogenic landscapes. Such a historical perspective is critical for understanding the status and trends of extant biodiversity as well as for identifying priorities to halt further losses. Using extensive historical data sets of specimen records and results of contemporary surveys, we searched for evidence of local extinctions of a terra firma rainforest avifauna over 200 years in a 2500 km(2) eastern Amazonian region around the Brazilian city of Belém. This region has the longest history of ornithological fieldwork in the entire Amazon basin and lies in the highly threatened Belém Centre of Endemism. We also compared our historically inferred extinction events with extensive data on species occurrences in a sample of catchments in a nearby municipality (Paragominas) that encompass a gradient of past forest loss. We found evidence for the possible extinction of 47 species (14% of the regional species pool) that were unreported from 1980 to 2013 (80% last recorded between 1900 and 1980). Seventeen species appear on the International Union for Conservation of Nature Red List, and many of these are large-bodied. The species lost from the region immediately around Belém are similar to those which are currently restricted to well-forested catchments in Paragominas. Although we anticipate the future rediscovery or recolonization of some species inferred to be extinct by our calculations, we also expect that there are likely to be additional local extinctions, not reported here, given the ongoing loss and degradation of remaining areas of native vegetation across eastern Amazonia.


Asunto(s)
Distribución Animal , Aves/fisiología , Extinción Biológica , Animales , Brasil , Conservación de los Recursos Naturales , Ecosistema , Factores de Tiempo
13.
Curr Biol ; 33(16): 3495-3504.e4, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37473761

RESUMEN

Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%-18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost.


Asunto(s)
Biodiversidad , Bosques , Humanos , Bosque Lluvioso , Brasil , Clima Tropical , Conservación de los Recursos Naturales , Ecosistema
14.
Science ; 379(6630): eabp8622, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36701452

RESUMEN

Approximately 2.5 × 106 square kilometers of the Amazon forest are currently degraded by fire, edge effects, timber extraction, and/or extreme drought, representing 38% of all remaining forests in the region. Carbon emissions from this degradation total up to 0.2 petagrams of carbon per year (Pg C year-1), which is equivalent to, if not greater than, the emissions from Amazon deforestation (0.06 to 0.21 Pg C year-1). Amazon forest degradation can reduce dry-season evapotranspiration by up to 34% and cause as much biodiversity loss as deforestation in human-modified landscapes, generating uneven socioeconomic burdens, mainly to forest dwellers. Projections indicate that degradation will remain a dominant source of carbon emissions independent of deforestation rates. Policies to tackle degradation should be integrated with efforts to curb deforestation and complemented with innovative measures addressing the disturbances that degrade the Amazon forest.


Asunto(s)
Carbono , Conservación de los Recursos Naturales , Bosque Lluvioso , Biodiversidad , Ciclo del Carbono , Brasil
15.
Nat Ecol Evol ; 6(7): 878-889, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35577983

RESUMEN

Tropical forests are some of the most biodiverse ecosystems in the world, yet their functioning is threatened by anthropogenic disturbances and climate change. Global actions to conserve tropical forests could be enhanced by having local knowledge on the forests' functional diversity and functional redundancy as proxies for their capacity to respond to global environmental change. Here we create estimates of plant functional diversity and redundancy across the tropics by combining a dataset of 16 morphological, chemical and photosynthetic plant traits sampled from 2,461 individual trees from 74 sites distributed across four continents together with local climate data for the past half century. Our findings suggest a strong link between climate and functional diversity and redundancy with the three trait groups responding similarly across the tropics and climate gradient. We show that drier tropical forests are overall less functionally diverse than wetter forests and that functional redundancy declines with increasing soil water and vapour pressure deficits. Areas with high functional diversity and high functional redundancy tend to better maintain ecosystem functioning, such as aboveground biomass, after extreme weather events. Our predictions suggest that the lower functional diversity and lower functional redundancy of drier tropical forests, in comparison with wetter forests, may leave them more at risk of shifting towards alternative states in face of further declines in water availability across tropical regions.


Asunto(s)
Cambio Climático , Ecosistema , Bosques , Árboles , Agua
16.
Ecol Evol ; 11(9): 4012-4022, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33976790

RESUMEN

Studies on the effects of human-driven forest disturbance usually focus on either biodiversity or carbon dynamics but much less is known about ecosystem processes that span different trophic levels. Herbivory is a fundamental ecological process for ecosystem functioning, but it remains poorly quantified in human-modified tropical rainforests.Here, we present the results of the largest study to date on the impacts of human disturbances on herbivory. We quantified the incidence (percentage of leaves affected) and severity (the percentage of leaf area lost) of canopy insect herbivory caused by chewers, miners, and gall makers in leaves from 1,076 trees distributed across 20 undisturbed and human-modified forest plots in the Amazon.We found that chewers dominated herbivory incidence, yet were not a good predictor of the other forms of herbivory at either the stem or plot level. Chewing severity was higher in both logged and logged-and-burned primary forests when compared to undisturbed forests. We found no difference in herbivory severity between undisturbed primary forests and secondary forests. Despite evidence at the stem level, neither plot-level incidence nor severity of the three forms of herbivory responded to disturbance. Synthesis. Our large-scale study of canopy herbivory confirms that chewers dominate the herbivory signal in tropical forests, but that their influence on leaf area lost cannot predict the incidence or severity of other forms. We found only limited evidence suggesting that human disturbance affects the severity of leaf herbivory, with higher values in logged and logged-and-burned forests than undisturbed and secondary forests. Additionally, we found no effect of human disturbance on the incidence of leaf herbivory.

17.
Philos Trans R Soc Lond B Biol Sci ; 375(1794): 20190116, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-31983328

RESUMEN

Tropical forests and coral reefs host a disproportionately large share of global biodiversity and provide ecosystem functions and services used by millions of people. Yet, ongoing climate change is leading to an increase in frequency and magnitude of extreme climatic events in the tropics, which, in combination with other local human disturbances, is leading to unprecedented negative ecological consequences for tropical forests and coral reefs. Here, we provide an overview of how and where climate extremes are affecting the most biodiverse ecosystems on Earth and summarize how interactions between global, regional and local stressors are affecting tropical forest and coral reef systems through impacts on biodiversity and ecosystem resilience. We also discuss some key challenges and opportunities to promote mitigation and adaptation to a changing climate at local and global scales. This article is part of the theme issue 'Climate change and ecosystems: threats, opportunities and solutions'.


Asunto(s)
Biodiversidad , Cambio Climático , Conservación de los Recursos Naturales , Arrecifes de Coral , Bosques , Clima Tropical
18.
Ecology ; 101(3): e02954, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31840235

RESUMEN

Tropical forests hold 30% of Earth's terrestrial carbon and at least 60% of its terrestrial biodiversity, but forest loss and degradation are jeopardizing these ecosystems. Although the regrowth of secondary forests has the potential to offset some of the losses of carbon and biodiversity, it remains unclear if secondary regeneration will be affected by climate changes such as higher temperatures and more frequent extreme droughts. We used a data set of 10 repeated forest inventories spanning two decades (1999-2017) to investigate carbon and tree species recovery and how climate and landscape context influence carbon dynamics in an older secondary forest located in one of the oldest post-Columbian agricultural frontiers in the Brazilian Amazon. Carbon accumulation averaged 1.08 Mg·ha-1 ·yr-1 , and species richness was effectively constant over the studied period. Moreover, we provide evidence that secondary forests are vulnerable to drought stress: Carbon balance and growth rates were lower in drier periods. This contrasts with drought responses in primary forests, where changes in carbon dynamics are driven by increased stem mortality. These results highlight an important climate change-vegetation feedback, whereby the increasing dry-season lengths being observed across parts of Amazonia may reduce the effectiveness of secondary forests in sequestering carbon and mitigating climate change. In addition, the current rate of forest regrowth in this region was low compared with previous pan-tropical and Amazonian assessments-our secondary forests reached just 41.1% of the average carbon and 56% of the tree diversity in the nearest primary forests-suggesting that these areas are unlikely to return to their original levels on politically meaningful time scales.


Asunto(s)
Ecosistema , Bosques , Biodiversidad , Brasil , Cambio Climático , Sequías , Árboles , Clima Tropical
19.
Science ; 370(6512): 117-121, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33004520

RESUMEN

Conservation initiatives overwhelmingly focus on terrestrial biodiversity, and little is known about the freshwater cobenefits of terrestrial conservation actions. We sampled more than 1500 terrestrial and freshwater species in the Amazon and simulated conservation for species from both realms. Prioritizations based on terrestrial species yielded on average just 22% of the freshwater benefits achieved through freshwater-focused conservation. However, by using integrated cross-realm planning, freshwater benefits could be increased by up to 600% for a 1% reduction in terrestrial benefits. Where freshwater biodiversity data are unavailable but aquatic connectivity is accounted for, freshwater benefits could still be doubled for negligible losses of terrestrial coverage. Conservation actions are urgently needed to improve the status of freshwater species globally. Our results suggest that such gains can be achieved without compromising terrestrial conservation goals.


Asunto(s)
Organismos Acuáticos , Conservación de los Recursos Naturales , Ríos , Animales , Biodiversidad , Brasil
20.
Rev Esc Enferm USP ; 42(1): 19-25, 2008 Mar.
Artículo en Portugués | MEDLINE | ID: mdl-18450143

RESUMEN

Care for a dependent elderly individual with a chronic disease can be a threat and cause stress. Success in dealing with this situation will depend on coping strategies, defined as processes used in order to control the demands of the individual-environment relationship. In this study the goal was to detect coping strategies used by caregivers for the elderly. A qualitative study was carried out through the analysis of coping discourse and theoretical reference. The sample was comprised of 16 individuals. It was observed that the coping strategies most used by caregivers were centered on emotion, and that caregiving tasks imply many changes in the life of caregivers, who perform them with no aid, with work overload, loss of liberty, and frustration. The greatest stress is related to the lack of help from family members and of shared responsibilities. Stimulating the involvement of the family, educating and giving basic orientation, which may reduce the difficulties of caregiving, could improve these individuals' well-being.


Asunto(s)
Adaptación Psicológica , Cuidadores/psicología , Enfermedad Crónica , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA