Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Biol Chem ; 296: 100552, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33744293

RESUMEN

The Cellulosome is an intricate macromolecular protein complex that centralizes the cellulolytic efforts of many anaerobic microorganisms through the promotion of enzyme synergy and protein stability. The assembly of numerous carbohydrate processing enzymes into a macromolecular multiprotein structure results from the interaction of enzyme-borne dockerin modules with repeated cohesin modules present in noncatalytic scaffold proteins, termed scaffoldins. Cohesin-dockerin (Coh-Doc) modules are typically classified into different types, depending on structural conformation and cellulosome role. Thus, type I Coh-Doc complexes are usually responsible for enzyme integration into the cellulosome, while type II Coh-Doc complexes tether the cellulosome to the bacterial wall. In contrast to other known cellulosomes, cohesin types from Bacteroides cellulosolvens, a cellulosome-producing bacterium capable of utilizing cellulose and cellobiose as carbon sources, are reversed for all scaffoldins, i.e., the type II cohesins are located on the enzyme-integrating primary scaffoldin, whereas the type I cohesins are located on the anchoring scaffoldins. It has been previously shown that type I B. cellulosolvens interactions possess a dual-binding mode that adds flexibility to scaffoldin assembly. Herein, we report the structural mechanism of enzyme recruitment into B. cellulosolvens cellulosome and the identification of the molecular determinants of its type II cohesin-dockerin interactions. The results indicate that, unlike other type II complexes, these possess a dual-binding mode of interaction, akin to type I complexes. Therefore, the plasticity of dual-binding mode interactions seems to play a pivotal role in the assembly of B. cellulosolvens cellulosome, which is consistent with its unmatched complexity and size.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteroides/metabolismo , Proteínas de Ciclo Celular/metabolismo , Celulosomas/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Clostridiales/metabolismo , Proteínas Bacterianas/genética , Bacteroides/genética , Bacteroides/crecimiento & desarrollo , Proteínas de Ciclo Celular/genética , Celobiosa/metabolismo , Celulosa/metabolismo , Proteínas Cromosómicas no Histona/genética , Clostridiales/genética , Clostridiales/crecimiento & desarrollo , Cohesinas
2.
Int J Mol Sci ; 23(7)2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35409382

RESUMEN

In nature, the deconstruction of plant carbohydrates is carried out by carbohydrate-active enzymes (CAZymes). A high-throughput (HTP) strategy was used to isolate and clone 1476 genes obtained from a diverse library of recombinant CAZymes covering a variety of sequence-based families, enzyme classes, and source organisms. All genes were successfully isolated by either PCR (61%) or gene synthesis (GS) (39%) and were subsequently cloned into Escherichia coli expression vectors. Most proteins (79%) were obtained at a good yield during recombinant expression. A significantly lower number (p < 0.01) of proteins from eukaryotic (57.7%) and archaeal (53.3%) origin were soluble compared to bacteria (79.7%). Genes obtained by GS gave a significantly lower number (p = 0.04) of soluble proteins while the green fluorescent protein tag improved protein solubility (p = 0.05). Finally, a relationship between the amino acid composition and protein solubility was observed. Thus, a lower percentage of non-polar and higher percentage of negatively charged amino acids in a protein may be a good predictor for higher protein solubility in E. coli. The HTP approach presented here is a powerful tool for producing recombinant CAZymes that can be used for future studies of plant cell wall degradation. Successful production and expression of soluble recombinant proteins at a high rate opens new possibilities for the high-throughput production of targets from limitless sources.


Asunto(s)
Escherichia coli , Plantas , Biomasa , Carbohidratos , Escherichia coli/genética , Escherichia coli/metabolismo , Biblioteca de Genes , Humanos , Plantas/genética , Plantas/metabolismo
3.
J Biol Chem ; 293(11): 4201-4212, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29367338

RESUMEN

The cellulosome is a remarkably intricate multienzyme nanomachine produced by anaerobic bacteria to degrade plant cell wall polysaccharides. Cellulosome assembly is mediated through binding of enzyme-borne dockerin modules to cohesin modules of the primary scaffoldin subunit. The anaerobic bacterium Acetivibrio cellulolyticus produces a highly intricate cellulosome comprising an adaptor scaffoldin, ScaB, whose cohesins interact with the dockerin of the primary scaffoldin (ScaA) that integrates the cellulosomal enzymes. The ScaB dockerin selectively binds to cohesin modules in ScaC that anchors the cellulosome onto the cell surface. Correct cellulosome assembly requires distinct specificities displayed by structurally related type-I cohesin-dockerin pairs that mediate ScaC-ScaB and ScaA-enzyme assemblies. To explore the mechanism by which these two critical protein interactions display their required specificities, we determined the crystal structure of the dockerin of a cellulosomal enzyme in complex with a ScaA cohesin. The data revealed that the enzyme-borne dockerin binds to the ScaA cohesin in two orientations, indicating two identical cohesin-binding sites. Combined mutagenesis experiments served to identify amino acid residues that modulate type-I cohesin-dockerin specificity in A. cellulolyticus Rational design was used to test the hypothesis that the ligand-binding surfaces of ScaA- and ScaB-associated dockerins mediate cohesin recognition, independent of the structural scaffold. Novel specificities could thus be engineered into one, but not both, of the ligand-binding sites of ScaB, whereas attempts at manipulating the specificity of the enzyme-associated dockerin were unsuccessful. These data indicate that dockerin specificity requires critical interplay between the ligand-binding surface and the structural scaffold of these modules.


Asunto(s)
Bacterias Anaerobias/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Celulosomas/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Sitios de Unión , Catálisis , Dominio Catalítico , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Pared Celular/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Conformación Proteica , Subunidades de Proteína , Homología de Secuencia , Relación Estructura-Actividad , Especificidad por Sustrato , Cohesinas
4.
Proc Natl Acad Sci U S A ; 113(26): 7136-41, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27298375

RESUMEN

The breakdown of plant cell wall (PCW) glycans is an important biological and industrial process. Noncatalytic carbohydrate binding modules (CBMs) fulfill a critical targeting function in PCW depolymerization. Defining the portfolio of CBMs, the CBMome, of a PCW degrading system is central to understanding the mechanisms by which microbes depolymerize their target substrates. Ruminococcus flavefaciens, a major PCW degrading bacterium, assembles its catalytic apparatus into a large multienzyme complex, the cellulosome. Significantly, bioinformatic analyses of the R. flavefaciens cellulosome failed to identify a CBM predicted to bind to crystalline cellulose, a key feature of the CBMome of other PCW degrading systems. Here, high throughput screening of 177 protein modules of unknown function was used to determine the complete CBMome of R. flavefaciens The data identified six previously unidentified CBM families that targeted ß-glucans, ß-mannans, and the pectic polysaccharide homogalacturonan. The crystal structures of four CBMs, in conjunction with site-directed mutagenesis, provide insight into the mechanism of ligand recognition. In the CBMs that recognize ß-glucans and ß-mannans, differences in the conformation of conserved aromatic residues had a significant impact on the topology of the ligand binding cleft and thus ligand specificity. A cluster of basic residues in CBM77 confers calcium-independent recognition of homogalacturonan, indicating that the carboxylates of galacturonic acid are key specificity determinants. This report shows that the extended repertoire of proteins in the cellulosome of R. flavefaciens contributes to an extended CBMome that supports efficient PCW degradation in the absence of CBMs that specifically target crystalline cellulose.


Asunto(s)
Proteínas Bacterianas/metabolismo , Celulosomas/metabolismo , Polisacáridos/metabolismo , Ruminococcus/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Celulosomas/química , Celulosomas/genética , Cristalografía por Rayos X , Modelos Moleculares , Polisacáridos/química , Unión Proteica , Ruminococcus/química , Ruminococcus/genética
5.
J Biol Chem ; 292(12): 4847-4860, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28179427

RESUMEN

Deconstruction of cellulose, the most abundant plant cell wall polysaccharide, requires the cooperative activity of a large repertoire of microbial enzymes. Modular cellulases contain non-catalytic type A carbohydrate-binding modules (CBMs) that specifically bind to the crystalline regions of cellulose, thus promoting enzyme efficacy through proximity and targeting effects. Although type A CBMs play a critical role in cellulose recycling, their mechanism of action remains poorly understood. Here we produced a library of recombinant CBMs representative of the known diversity of type A modules. The binding properties of 40 CBMs, in fusion with an N-terminal GFP domain, revealed that type A CBMs possess the ability to recognize different crystalline forms of cellulose and chitin over a wide range of temperatures, pH levels, and ionic strengths. A Spirochaeta thermophila CBM64, in particular, displayed plasticity in its capacity to bind both crystalline and soluble carbohydrates under a wide range of extreme conditions. The structure of S. thermophila StCBM64C revealed an untwisted, flat, carbohydrate-binding interface comprising the side chains of four tryptophan residues in a co-planar linear arrangement. Significantly, two highly conserved asparagine side chains, each one located between two tryptophan residues, are critical to insoluble and soluble glucan recognition but not to bind xyloglucan. Thus, CBM64 compact structure and its extended and versatile ligand interacting platform illustrate how type A CBMs target their appended plant cell wall-degrading enzymes to a diversity of recalcitrant carbohydrates under a wide range of environmental conditions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Celulasas/metabolismo , Spirochaeta/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Metabolismo de los Hidratos de Carbono , Pared Celular/metabolismo , Celulasas/química , Celulosa/metabolismo , Cristalografía por Rayos X , Glucanos/metabolismo , Modelos Moleculares , Concentración Osmolar , Unión Proteica , Conformación Proteica , Spirochaeta/química , Temperatura , Xilanos/metabolismo
6.
J Biol Chem ; 291(52): 26658-26669, 2016 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-27875311

RESUMEN

The assembly of one of Nature's most elaborate multienzyme complexes, the cellulosome, results from the binding of enzyme-borne dockerins to reiterated cohesin domains located in a non-catalytic primary scaffoldin. Generally, dockerins present two similar cohesin-binding interfaces that support a dual binding mode. The dynamic integration of enzymes in cellulosomes, afforded by the dual binding mode, is believed to incorporate additional flexibility in highly populated multienzyme complexes. Ruminococcus flavefaciens, the primary degrader of plant structural carbohydrates in the rumen of mammals, uses a portfolio of more than 220 different dockerins to assemble the most intricate cellulosome known to date. A sequence-based analysis organized R. flavefaciens dockerins into six groups. Strikingly, a subset of R. flavefaciens cellulosomal enzymes, comprising dockerins of groups 3 and 6, were shown to be indirectly incorporated into primary scaffoldins via an adaptor scaffoldin termed ScaC. Here, we report the crystal structure of a group 3 R. flavefaciens dockerin, Doc3, in complex with ScaC cohesin. Doc3 is unusual as it presents a large cohesin-interacting surface that lacks the structural symmetry required to support a dual binding mode. In addition, dockerins of groups 3 and 6, which bind exclusively to ScaC cohesin, display a conserved mechanism of protein recognition that is similar to Doc3. Groups 3 and 6 dockerins are predominantly appended to hemicellulose-degrading enzymes. Thus, single binding mode dockerins interacting with adaptor scaffoldins exemplify an evolutionary pathway developed by R. flavefaciens to recruit hemicellulases to the sophisticated cellulosomes acting in the gastrointestinal tract of mammals.


Asunto(s)
Proteínas Bacterianas/metabolismo , Celulasa/metabolismo , Celulosomas/metabolismo , Polisacáridos/metabolismo , Ruminococcus/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas de Ciclo Celular/metabolismo , Celulasa/química , Celulosomas/microbiología , Proteínas Cromosómicas no Histona/metabolismo , Cristalización , Cristalografía por Rayos X , Infecciones por Bacterias Grampositivas/microbiología , Complejos Multienzimáticos , Unión Proteica , Conformación Proteica , Ruminococcus/genética , Homología de Secuencia de Aminoácido , Cohesinas
7.
Microb Cell Fact ; 16(1): 4, 2017 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-28093085

RESUMEN

BACKGROUND: Animal venoms are large, complex libraries of bioactive, disulphide-rich peptides. These peptides, and their novel biological activities, are of increasing pharmacological and therapeutic importance. However, recombinant expression of venom peptides in Escherichia coli remains difficult due to the significant number of cysteine residues requiring effective post-translational processing. There is also an urgent need to develop high-throughput recombinant protocols applicable to the production of reticulated peptides to enable efficient screening of their drug potential. Here, a comprehensive study was developed to investigate how synthetic gene design, choice of fusion tag, compartment of expression, tag removal conditions and protease recognition site affect levels of solubility of oxidized venom peptides produced in E. coli. RESULTS: The data revealed that expression of venom peptides imposes significant pressure on cysteine codon selection. DsbC was the best fusion tag for venom peptide expression, in particular when the fusion was directed to the bacterial periplasm. While the redox activity of DsbC was not essential to maximize expression of recombinant fusion proteins, redox activity did lead to higher levels of correctly folded target peptides. With the exception of proline, the canonical TEV protease recognition site tolerated all other residues at its C-terminus, confirming that no non-native residues, which might affect activity, need to be incorporated at the N-terminus of recombinant peptides for tag removal. CONCLUSIONS: This study reveals that E. coli is a convenient heterologous host for the expression of soluble and functional venom peptides. Using the optimal construct design, a large and diverse range of animal venom peptides were produced in the µM scale. These results open up new possibilities for the high-throughput production of recombinant disulphide-rich peptides in E. coli.


Asunto(s)
Endopeptidasas/metabolismo , Escherichia coli/genética , Biosíntesis de Péptidos , Péptidos/genética , Ponzoñas/biosíntesis , Ponzoñas/genética , Animales , Biotecnología/métodos , Clonación Molecular , Disulfuros/química , Endopeptidasas/química , Vectores Genéticos , Ensayos Analíticos de Alto Rendimiento , Oxidación-Reducción , Péptidos/química , Péptidos/aislamiento & purificación , Periplasma/química , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Solubilidad , Ponzoñas/química , Ponzoñas/metabolismo
8.
J Biol Chem ; 290(17): 10572-86, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25713075

RESUMEN

Structural carbohydrates comprise an extraordinary source of energy that remains poorly utilized by the biofuel sector as enzymes have restricted access to their substrates within the intricacy of plant cell walls. Carbohydrate active enzymes (CAZYmes) that target recalcitrant polysaccharides are modular enzymes containing noncatalytic carbohydrate-binding modules (CBMs) that direct enzymes to their cognate substrate, thus potentiating catalysis. In general, CBMs are functionally and structurally autonomous from their associated catalytic domains from which they are separated through flexible linker sequences. Here, we show that a C-terminal CBM46 derived from BhCel5B, a Bacillus halodurans endoglucanase, does not interact with ß-glucans independently but, uniquely, acts cooperatively with the catalytic domain of the enzyme in substrate recognition. The structure of BhCBM46 revealed a ß-sandwich fold that abuts onto the region of the substrate binding cleft upstream of the active site. BhCBM46 as a discrete entity is unable to bind to ß-glucans. Removal of BhCBM46 from BhCel5B, however, abrogates binding to ß-1,3-1,4-glucans while substantially decreasing the affinity for decorated ß-1,4-glucan homopolymers such as xyloglucan. The CBM46 was shown to contribute to xyloglucan hydrolysis only in the context of intact plant cell walls, but it potentiates enzymatic activity against purified ß-1,3-1,4-glucans in solution or within the cell wall. This report reveals the mechanism by which a CBM can promote enzyme activity through direct interaction with the substrate or by targeting regions of the plant cell wall where the target glucan is abundant.


Asunto(s)
Bacillus/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Celulasa/química , Celulasa/metabolismo , Secuencia de Aminoácidos , Bacillus/genética , Proteínas Bacterianas/genética , Metabolismo de los Hidratos de Carbono , Dominio Catalítico , Pared Celular/metabolismo , Celulasa/genética , Cristalografía por Rayos X , Genes Bacterianos , Variación Genética , Glucanos/metabolismo , Hidrólisis , Modelos Moleculares , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Termodinámica , Nicotiana/metabolismo , Xilanos/metabolismo , beta-Glucanos/metabolismo
9.
J Biol Chem ; 290(21): 13578-90, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25855788

RESUMEN

Protein-protein interactions play a pivotal role in the assembly of the cellulosome, one of nature's most intricate nanomachines dedicated to the depolymerization of complex carbohydrates. The integration of cellulosomal components usually occurs through the binding of type I dockerin modules located at the C terminus of the enzymes to cohesin modules located in the primary scaffoldin subunit. Cellulosomes are typically recruited to the cell surface via type II cohesin-dockerin interactions established between primary and cell-surface anchoring scaffoldin subunits. In contrast with type II interactions, type I dockerins usually display a dual binding mode that may allow increased conformational flexibility during cellulosome assembly. Acetivibrio cellulolyticus produces a highly complex cellulosome comprising an unusual adaptor scaffoldin, ScaB, which mediates the interaction between the primary scaffoldin, ScaA, through type II cohesin-dockerin interactions and the anchoring scaffoldin, ScaC, via type I cohesin-dockerin interactions. Here, we report the crystal structure of the type I ScaB dockerin in complex with a type I ScaC cohesin in two distinct orientations. The data show that the ScaB dockerin displays structural symmetry, reflected by the presence of two essentially identical binding surfaces. The complex interface is more extensive than those observed in other type I complexes, which results in an ultra-high affinity interaction (Ka ∼10(12) M). A subset of ScaB dockerin residues was also identified as modulating the specificity of type I cohesin-dockerin interactions in A. cellulolyticus. This report reveals that recruitment of cellulosomes onto the cell surface may involve dockerins presenting a dual binding mode to incorporate additional flexibility into the quaternary structure of highly populated multienzyme complexes.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Ciclo Celular/química , Celulosomas/metabolismo , Proteínas Cromosómicas no Histona/química , Bacterias Grampositivas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Celulosomas/química , Proteínas Cromosómicas no Histona/metabolismo , Cristalización , Cristalografía por Rayos X , Bacterias Grampositivas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Resonancia por Plasmón de Superficie , Cohesinas
10.
J Biol Chem ; 290(26): 16215-25, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-25934389

RESUMEN

Cohesin-dockerin interactions orchestrate the assembly of one of nature's most elaborate multienzyme complexes, the cellulosome. Cellulosomes are produced exclusively by anaerobic microbes and mediate highly efficient hydrolysis of plant structural polysaccharides, such as cellulose and hemicellulose. In the canonical model of cellulosome assembly, type I dockerin modules of the enzymes bind to reiterated type I cohesin modules of a primary scaffoldin. Each type I dockerin contains two highly conserved cohesin-binding sites, which confer quaternary flexibility to the multienzyme complex. The scaffoldin also bears a type II dockerin that anchors the entire complex to the cell surface by binding type II cohesins of anchoring scaffoldins. In Bacteroides cellulosolvens, however, the organization of the cohesin-dockerin types is reversed, whereby type II cohesin-dockerin pairs integrate the enzymes into the primary scaffoldin, and type I modules mediate cellulosome attachment to an anchoring scaffoldin. Here, we report the crystal structure of a type I cohesin from B. cellulosolvens anchoring scaffoldin ScaB to 1.84-Å resolution. The structure resembles other type I cohesins, and the putative dockerin-binding site, centered at ß-strands 3, 5, and 6, is likely to be conserved in other B. cellulosolvens type I cohesins. Combined computational modeling, mutagenesis, and affinity-based binding studies revealed similar hydrogen-bonding networks between putative Ser/Asp recognition residues in the dockerin at positions 11/12 and 45/46, suggesting that a dual-binding mode is not exclusive to the integration of enzymes into primary cellulosomes but can also characterize polycellulosome assembly and cell-surface attachment. This general approach may provide valuable structural information of the cohesin-dockerin interface, in lieu of a definitive crystal structure.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bacteroides/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Mutación , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Bacteroides/química , Bacteroides/genética , Sitios de Unión , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Cristalografía por Rayos X , Cinética , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Cohesinas
11.
J Biol Chem ; 288(7): 4799-809, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23229556

RESUMEN

Plant biomass is central to the carbon cycle and to environmentally sustainable industries exemplified by the biofuel sector. Plant cell wall degrading enzymes generally contain noncatalytic carbohydrate binding modules (CBMs) that fulfil a targeting function, which enhances catalysis. CBMs that bind ß-glucan chains often display broad specificity recognizing ß1,4-glucans (cellulose), ß1,3-ß1,4-mixed linked glucans and xyloglucan, a ß1,4-glucan decorated with α1,6-xylose residues, by targeting structures common to the three polysaccharides. Thus, CBMs that recognize xyloglucan target the ß1,4-glucan backbone and only accommodate the xylose decorations. Here we show that two closely related CBMs, CBM65A and CBM65B, derived from EcCel5A, a Eubacterium cellulosolvens endoglucanase, bind to a range of ß-glucans but, uniquely, display significant preference for xyloglucan. The structures of the two CBMs reveal a ß-sandwich fold. The ligand binding site comprises the ß-sheet that forms the concave surface of the proteins. Binding to the backbone chains of ß-glucans is mediated primarily by five aromatic residues that also make hydrophobic interactions with the xylose side chains of xyloglucan, conferring the distinctive specificity of the CBMs for the decorated polysaccharide. Significantly, and in contrast to other CBMs that recognize ß-glucans, CBM65A utilizes different polar residues to bind cellulose and mixed linked glucans. Thus, Gln(106) is central to cellulose recognition, but is not required for binding to mixed linked glucans. This report reveals the mechanism by which ß-glucan-specific CBMs can distinguish between linear and mixed linked glucans, and show how these CBMs can exploit an extensive hydrophobic platform to target the side chains of decorated ß-glucans.


Asunto(s)
Carbohidratos/química , Glucanos/fisiología , Sitios de Unión , Calorimetría/métodos , Catálisis , Pared Celular/metabolismo , Celulosa/química , Cristalografía por Rayos X/métodos , Escherichia coli/metabolismo , Glucanos/química , Cinética , Ligandos , Mutagénesis Sitio-Dirigida , Oligosacáridos/química , Polisacáridos/química , Unión Proteica , Conformación Proteica , Termodinámica , Xilanos/química , beta-Glucanos/química
12.
J Biol Chem ; 287(53): 44394-405, 2012 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-23118225

RESUMEN

Protein-protein interactions play a pivotal role in a large number of biological processes exemplified by the assembly of the cellulosome. Integration of cellulosomal components occurs through the binding of type I cohesin modules located in a non-catalytic molecular scaffold to type I dockerin modules located at the C terminus of cellulosomal enzymes. The majority of type I dockerins display internal symmetry reflected by the presence of two essentially identical cohesin-binding surfaces. Here we report the crystal structures of two novel Clostridium thermocellum type I cohesin-dockerin complexes (CohOlpC-Doc124A and CohOlpA-Doc918). The data revealed that the two dockerins, Doc918 and Doc124A, are unusual because they lack the structural symmetry required to support a dual binding mode. Thus, in both cases, cohesin recognition is dominated by residues located at positions 11, 12, and 19 of one of the dockerin binding surfaces. The alternative binding mode is not possible (Doc918) or highly limited (Doc124A) because residues that assume the critical interacting positions, when dockerins are reoriented by 180°, make steric clashes with the cohesin. In common with a third dockerin (Doc258) that also presents a single binding mode, Doc124A directs the appended cellulase, Cel124A, to the surface of C. thermocellum and not to cellulosomes because it binds preferentially to type I cohesins located at the cell envelope. Although there are a few exceptions, such as Doc918 described here, these data suggest that there is considerable selective pressure for the evolution of a dual binding mode in type I dockerins that direct enzymes into cellulosomes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Clostridium thermocellum/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Celulosomas/química , Celulosomas/genética , Celulosomas/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Clostridium thermocellum/química , Clostridium thermocellum/genética , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Cohesinas
13.
Artículo en Inglés | MEDLINE | ID: mdl-23385766

RESUMEN

The rumen anaerobic cellulolytic bacterium Eubacterium cellulosolvens produces a large range of cellulases and hemicellulases responsible for the efficient hydrolysis of plant cell wall polysaccharides. One of these enzymes, endoglucanase Cel5A, comprises a tandemly repeated carbohydrate-binding module (CBM65) fused to a glycoside hydrolase family 5 (Cel5A) catalytic domain, joined by flexible linker sequences. The second carbohydrate-binding module located at the C-terminus side of the endoglucanase (CBM65B) has been co-crystallized with either cellohexaose or xyloglucan heptasaccharide. The crystals belong to the hexagonal space group P6(5) and tetragonal space group P4(3)2(1)2, containing a single molecule in the asymmetric unit. The structures of CBM65B have been solved by molecular replacement.


Asunto(s)
Celulasa/química , Celulasa/aislamiento & purificación , Eubacterium/enzimología , Receptores de Superficie Celular/química , Receptores de Superficie Celular/aislamiento & purificación , Secuencia de Aminoácidos , Cristalización , Cristalografía por Rayos X , Electroforesis en Gel de Poliacrilamida , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia
14.
Artículo en Inglés | MEDLINE | ID: mdl-24316849

RESUMEN

The modular carbohydrate-active enzyme belonging to glycoside hydrolase family 30 (GH30) from Clostridium thermocellum (CtXynGH30) is a cellulosomal protein which plays an important role in plant cell-wall degradation. The full-length CtXynGH30 contains an N-terminal catalytic module (Xyn30A) followed by a family 6 carbohydrate-binding module (CBM6) and a dockerin at the C-terminus. The recombinant protein has a molecular mass of 45 kDa. Preliminary structural characterization was carried out on Xyn30A crystallized in different conditions. All tested crystals belonged to space group P1 with one molecule in the asymmetric unit. Molecular replacement has been used to solve the Xyn30A structure.


Asunto(s)
Proteínas Bacterianas/química , Clostridium thermocellum/química , Xilosidasas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clostridium thermocellum/enzimología , Clostridium thermocellum/genética , Cristalización , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Histidina/química , Histidina/genética , Datos de Secuencia Molecular , Oligopéptidos/química , Oligopéptidos/genética , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Xilosidasas/genética , Xilosidasas/metabolismo
15.
Int J Biol Macromol ; 224: 55-67, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36252630

RESUMEN

The cellulosome is an elaborate multi-enzyme structure secreted by many anaerobic microorganisms for the efficient degradation of lignocellulosic substrates. It is composed of multiple catalytic and non-catalytic components that are assembled through high-affinity protein-protein interactions between the enzyme-borne dockerin (Doc) modules and the repeated cohesin (Coh) modules present in primary scaffoldins. In some cellulosomes, primary scaffoldins can interact with adaptor and cell-anchoring scaffoldins to create structures of increasing complexity. The cellulosomal system of the ruminal bacterium, Ruminococcus flavefaciens, is one of the most intricate described to date. An unprecedent number of different Doc specificities results in an elaborate architecture, assembled exclusively through single-binding-mode type-III Coh-Doc interactions. However, a set of type-III Docs exhibits certain features associated with the classic dual-binding mode Coh-Doc interaction. Here, the structure of the adaptor scaffoldin-borne ScaH Doc in complex with the Coh from anchoring scaffoldin ScaE is described. This complex, unlike previously described type-III interactions in R. flavefaciens, was found to interact in a dual-binding mode. The key residues determining Coh recognition were also identified. This information was used to perform structure-informed protein engineering to change the electrostatic profile of the binding surface and to improve the affinity between the two modules. The results show that the nature of the residues in the ligand-binding surface plays a major role in Coh recognition and that Coh-Doc affinity can be manipulated through rational design, a key feature for the creation of designer cellulosomes or other affinity-based technologies using tailored Coh-Doc interactions.


Asunto(s)
Proteínas Bacterianas , Celulosomas , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/química , Cohesinas
16.
Artículo en Inglés | MEDLINE | ID: mdl-22949188

RESUMEN

The cellulosome, a highly elaborate extracellular multi-enzyme complex of cellulases and hemicellulases, is responsible for the efficient degradation of plant cell-wall carbohydrates by anaerobic microorganisms. Cohesin and dockerin recognition pairs are integral to the architecture of the cellulosome. Thus, type I cohesin:dockerins are important for attaching the modular enzymatic components to primary scaffoldins to form the cellulosome. In contrast, type II dockerins located in primary scaffoldins bind to anchoring scaffoldins, thus contributing to the cell-surface attachment of the entire complex. Since anchoring scaffoldins usually contain more than one type II cohesin, they contribute to the assembly of polycellulosomes. Acetivibrio cellulolyticus possesses an extremely complex cellulosome arrangement which is organized by a primary enzyme-binding scaffoldin (ScaA), two anchoring scaffoldins (ScaC and ScaD) and an unusual adaptor scaffoldin (ScaB). A ScaB dockerin mutated to inactivate one of the two putative cohesin-binding interfaces complexed with the ScaC cohesin from A. cellulolyticus has been purified and crystallized and data were collected from tetragonal and monoclinic crystal forms to resolutions of 1.5 and 6.0 Å, respectively.


Asunto(s)
Bacterias/química , Proteínas Bacterianas/química , Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Bacterias/metabolismo , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/aislamiento & purificación , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/aislamiento & purificación , Proteínas Cromosómicas no Histona/metabolismo , Cristalización , Cristalografía por Rayos X , Unión Proteica , Cohesinas
17.
Biochim Biophys Acta ; 1804(10): 2054-62, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20637315

RESUMEN

Enzymes that degrade plant cell wall polysaccharides display a modular architecture comprising a catalytic domain bound to one or more non-catalytic carbohydrate-binding modules (CBMs). CBMs display considerable variation in primary structure and are grouped into 59 sequence-based families organized in the Carbohydrate-Active enZYme (CAZy) database. Here we report the crystal structure of CtCBM42A together with the biochemical characterization of two other members of family 42 CBMs from Clostridium thermocellum. CtCBM42A, CtCBM42B and CtCBM42C bind specifically to the arabinose side-chains of arabinoxylans and arabinan, suggesting that various cellulosomal components are targeted to these regions of the plant cell wall. The structure of CtCBM42A displays a beta-trefoil fold, which comprises 3 sub-domains designated as alpha, beta and gamma. Each one of the three sub-domains presents a putative carbohydrate-binding pocket where an aspartate residue located in a central position dominates ligand recognition. Intriguingly, the gamma sub-domain of CtCBM42A is pivotal for arabinoxylan binding, while the concerted action of beta and gamma sub-domains of CtCBM42B and CtCBM42C is apparently required for ligand sequestration. Thus, this work reveals that the binding mechanism of CBM42 members is in contrast with that of homologous CBM13s where recognition of complex polysaccharides results from the cooperative action of three protein sub-domains presenting similar affinities.


Asunto(s)
Proteínas Bacterianas/química , Clostridium thermocellum/química , Xilanos/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Clostridium thermocellum/genética , Cristalografía por Rayos X , Evolución Molecular , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación/genética , Filogenia , Conformación Proteica , Homología de Secuencia de Aminoácido , Xilanos/química
18.
Biochem J ; 424(3): 375-84, 2009 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-19758121

RESUMEN

Cellulosomes, synthesized by anaerobic microorganisms such as Clostridium thermocellum, are remarkably complex nanomachines that efficiently degrade plant cell wall polysaccharides. Cellulosome assembly results from the interaction of type I dockerin domains, present on the catalytic subunits, and the cohesin domains of a large non-catalytic integrating protein that acts as a molecular scaffold. In general, type I dockerins contain two distinct cohesin-binding interfaces that appear to display identical ligand specificities. Inspection of the C. thermocellum genome reveals 72 dockerin-containing proteins. In four of these proteins, Cthe_0258, Cthe_0435, Cthe_0624 and Cthe_0918, there are significant differences in the residues that comprise the two cohesin-binding sites of the type I dockerin domains. In addition, a protein of unknown function (Cthe_0452), containing a C-terminal cohesin highly similar to the equivalent domains present in C. thermocellum-integrating protein (CipA), was also identified. In the present study, the ligand specificities of the newly identified cohesin and dockerin domains are described. The results revealed that Cthe_0452 is located at the C. thermocellum cell surface and thus the protein was renamed as OlpC. The dockerins of Cthe_0258 and Cthe_0435 recognize, preferentially, the OlpC cohesin and thus these enzymes are believed to be predominantly located at the surface of the bacterium. By contrast, the dockerin domains of Cthe_0624 and Cthe_0918 are primarily cellulosomal since they bind preferentially to the cohesins of CipA. OlpC, which is a relatively abundant protein, may also adopt a 'warehouse' function by transiently retaining cellulosomal enzymes at the cell surface before they are assembled on to the multienzyme complex.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Clostridium thermocellum/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Pared Celular/metabolismo , Celulosomas/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Clostridium thermocellum/genética , Electroforesis en Gel de Poliacrilamida , Cinética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Mutación , Unión Proteica , Homología de Secuencia de Aminoácido , Termodinámica , Cohesinas
19.
Sci Rep ; 8(1): 6987, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29725056

RESUMEN

Cellulosomes are highly sophisticated molecular nanomachines that participate in the deconstruction of complex polysaccharides, notably cellulose and hemicellulose. Cellulosomal assembly is orchestrated by the interaction of enzyme-borne dockerin (Doc) modules to tandem cohesin (Coh) modules of a non-catalytic primary scaffoldin. In some cases, as exemplified by the cellulosome of the major cellulolytic ruminal bacterium Ruminococcus flavefaciens, primary scaffoldins bind to adaptor scaffoldins that further interact with the cell surface via anchoring scaffoldins, thereby increasing cellulosome complexity. Here we elucidate the structure of the unique Doc of R. flavefaciens FD-1 primary scaffoldin ScaA, bound to Coh 5 of the adaptor scaffoldin ScaB. The RfCohScaB5-DocScaA complex has an elliptical architecture similar to previously described complexes from a variety of ecological niches. ScaA Doc presents a single-binding mode, analogous to that described for the other two Coh-Doc specificities required for cellulosome assembly in R. flavefaciens. The exclusive reliance on a single-mode of Coh recognition contrasts with the majority of cellulosomes from other bacterial species described to date, where Docs contain two similar Coh-binding interfaces promoting a dual-binding mode. The discrete Coh-Doc interactions observed in ruminal cellulosomes suggest an adaptation to the exquisite properties of the rumen environment.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Multimerización de Proteína , Ruminococcus/enzimología , Proteínas Bacterianas/química , Calorimetría , Proteínas Portadoras/química , Celulosomas/metabolismo , Cristalografía por Rayos X , Electroforesis en Gel de Poliacrilamida , Unión Proteica , Conformación Proteica , Ruminococcus/metabolismo
20.
Sci Rep ; 7(1): 759, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28389644

RESUMEN

ABTRACT: Cellulosomes are sophisticated multi-enzymatic nanomachines produced by anaerobes to effectively deconstruct plant structural carbohydrates. Cellulosome assembly involves the binding of enzyme-borne dockerins (Doc) to repeated cohesin (Coh) modules located in a non-catalytic scaffoldin. Docs appended to cellulosomal enzymes generally present two similar Coh-binding interfaces supporting a dual-binding mode, which may confer increased positional adjustment of the different complex components. Ruminococcus flavefaciens' cellulosome is assembled from a repertoire of 223 Doc-containing proteins classified into 6 groups. Recent studies revealed that Docs of groups 3 and 6 are recruited to the cellulosome via a single-binding mode mechanism with an adaptor scaffoldin. To investigate the extent to which the single-binding mode contributes to the assembly of R. flavefaciens cellulosome, the structures of two group 1 Docs bound to Cohs of primary (ScaA) and adaptor (ScaB) scaffoldins were solved. The data revealed that group 1 Docs display a conserved mechanism of Coh recognition involving a single-binding mode. Therefore, in contrast to all cellulosomes described to date, the assembly of R. flavefaciens cellulosome involves single but not dual-binding mode Docs. Thus, this work reveals a novel mechanism of cellulosome assembly and challenges the ubiquitous implication of the dual-binding mode in the acquisition of cellulosome flexibility.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Celulosomas/química , Celulosomas/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Ruminococcus/metabolismo , Secuencia de Aminoácidos , Enlace de Hidrógeno , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Termodinámica , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA