RESUMEN
Interleukin-27 (IL-27) is able to inhibit HIV-1 replication in peripheral blood mononuclear cells (PBMCs), macrophages, and dendritic cells. Here, we identify that IL-27 can produce opposing effects on HIV-1 replication in PBMCs and that the HIV-1 restriction factor BST-2/Tetherin is involved in both inhibitory and enhancing effects on HIV-1 infection induced by IL-27. IL-27 inhibited HIV-1 replication when added to cells 2 h after infection, promoting the prototypical BST-2/Tetherin-induced virion accumulation at the cell membrane of HIV-1-infected PBMCs. BST-2/Tetherin gene expression was significantly upregulated in the IL-27-treated PBMCs, with a simultaneous increase in the number of BST-2/Tetherin+ cells. The silencing of BST-2/Tetherin diminished the anti-HIV-1 effect of IL-27. In contrast, IL-27 increased HIV-1 production when added to infected cells 4 days after infection. This enhancing effect was prevented by BST-2/Tetherin gene knockdown, which also permitted IL-27 to function again as an HIV-1 inhibitory factor. These contrasting roles of IL-27 were associated with the dynamic of viral production, since the IL-27-mediated enhancement of virus replication was prevented by antiretroviral treatment of infected cells, as well as by keeping cells under agitation to avoid cell-to-cell contact. Likewise, inhibition of CD11a, an integrin associated with HIV-1 cell-to-cell transmission, abrogated the IL-27 enhancement of HIV-1 production. Our findings illustrate the complexity of the HIV-1-host interactions and may impact the potential therapeutic use of IL-27 and other soluble mediators that induce BST-2/Tetherin expression for HIV-1 infection. IMPORTANCE Here, we describe new findings related to the ability of the cytokine IL-27 to regulate the growth of HIV-1 in CD4+ T lymphocytes. IL-27 has long been considered a potent inhibitor of HIV-1 replication, a notion based on several reports showing that this cytokine controls HIV-1 infection in peripheral blood mononuclear cells (PBMCs), monocyte-derived macrophages, and dendritic cells. However, our present results are contrary to the current knowledge that IL-27 acts only as a powerful downregulator of HIV-1 replication. We observed that IL-27 can either prevent or enhance viral growth in PBMCs, an outcome dependent on when this cytokine is added to the infected cells. We detected that the increase of HIV-1 dissemination is due to enhanced cell-to-cell transmission with the involvement of the interferon-induced HIV-1 restriction factor BST-2/Tetherin and CD11a (LFA-1), an integrin that participates in formation of virological synapse.
Asunto(s)
Antígeno 2 del Estroma de la Médula Ósea , Infecciones por VIH , Interleucina-27 , Humanos , Integrinas , Leucocitos Mononucleares/metabolismo , Proteínas Reguladoras y Accesorias ViralesRESUMEN
BACKGROUND: The unfolded protein response (UPR) is one of the pathways triggered to ensure quality control of the proteins assembled in the endoplasmic reticulum (ER) when cell homeostasis is compromised. This mechanism is primarily composed of three transmembrane proteins serving as stress sensors: PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme 1 (IRE1). These three proteins' synergic action elicits translation and transcriptional downstream pathways, leading to less protein production and activating genes that encode important proteins in folding processes, including chaperones. Previous reports showed that viruses have evolved mechanisms to curtail or customize this UPR signaling for their own benefit. However, HIV infection's effect on the UPR has scarcely been investigated. METHODS: This work investigated UPR modulation by HIV infection by assessing UPR-related protein expression under in vitro and in vivo conditions via Western blotting. Antiretroviral (ARV) drugs' influence on this stress response was also considered. RESULTS: In in vitro and in vivo analyses, our results confirm that HIV infection activates stress-response components and that ARV therapy contributes to changes in the UPR's activation profile. CONCLUSIONS: This is the first report showing UPR-related protein expression in HIV target cells derived directly from HIV-infected patients receiving different ARV therapies. Thus, two mechanisms may occur simultaneously: interference by HIV itself and the ARV drugs' pharmacological effects as UPR activators. New evidence of how HIV modulates the UPR to enhance its own replication and secure infection success is also presented.
Asunto(s)
Factor de Transcripción Activador 6/análisis , Antirretrovirales/uso terapéutico , Terapia Antirretroviral Altamente Activa/métodos , Endorribonucleasas/análisis , Infecciones por VIH/tratamiento farmacológico , Proteínas Serina-Treonina Quinasas/análisis , Respuesta de Proteína Desplegada , eIF-2 Quinasa/análisis , Adulto , Western Blotting , Femenino , Infecciones por VIH/patología , Humanos , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are highly similar neuropeptides present in several tissues, endowed with immunoregulatory functions and other systemic effects. We previously reported that both neuropeptides reduce viral production in HIV-1-infected primary macrophages, with the participation of ß-chemokines and IL-10, and now we describe molecular mechanisms engaged in this activity. Macrophages exposed to VIP or PACAP before HIV-1 infection showed resistance to viral replication, comparable to that observed when the cells were treated after infection. Also, multiple treatments with a suboptimal dose of VIP or PACAP after macrophage infection resulted in a decline of virus production similar to the inhibition promoted by a single exposure to the optimal inhibitory concentration. Cellular signaling pathways involving cAMP production and activation of protein kinases A and C were critical components of the VIP and PACAP anti-HIV-1 effects. Analysis of the transcription factors and the transcriptional/cell cycle regulators showed that VIP and PACAP induced cAMP response element-binding protein activation, inhibited NF-kB, and reduced Cyclin D1 levels in HIV-1-infected cells. Remarkably, VIP and PACAP promoted G-to-A mutations in the HIV-1 provirus, matching those derived from the activity of the APOBEC family of viral restriction factors, and reduced viral infectivity. In conclusion, our findings strengthen the antiretroviral potential of VIP and PACAP and point to new therapeutic approaches to control the progression of HIV-1 infection.
RESUMEN
The protozoan parasite Leishmania infects and replicates in macrophages, causing a spectrum of diseases in the human host, varying from cutaneous to visceral clinical forms. It is known that cytokines modulate the immunological response against Leishmania and are relevant for infection resolution. Here, we report that Interleukin (IL)-27 increases Leishmania amazonensis replication in human and murine macrophages and that the blockage of the IL-10 receptor on the surface of infected cells abolished the IL-27-mediated enhancement of Leishmania growth. IL-27 induced the activation/phosphorylation of protein kinase R (PKR) in macrophages, and PKR blockage or PKR gene deletion abrogated the enhancement of the parasite growth driven by IL-27, as well as the L. amazonensis-induced macrophage production of IL-27. We also observed that L. amazonensis-induced expression of IL-27 depends on type I interferon signaling and the engagement of Toll-like receptor 2. Treatment of Leishmania-infected mice with IL-27 increased lesion size and parasite loads in the footpad and lymph nodes of infected animals, indicating that this cytokine exerts a local and a systemic effect on parasite growth and propagation. In conclusion, we show that IL-27 is a L. amazonensis-enhancing factor and that the PKR/IFN1 axis and IL-10 are critical mediators of this IL-27 induced effect.