Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Emerg Infect Dis ; 30(9): 1872-1883, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39174018

RESUMEN

Cutaneous leishmaniasis is atypical in Sri Lanka because Leishmania donovani, which typically causes visceral disease, is the causative agent. The origins of recently described hybrids between L. donovani and other Leishmania spp. usually responsible for cutaneous leishmaniasis remain unknown. Other endemic dermotropic Leishmania spp. have not been reported in Sri Lanka. Genome analysis of 27 clinical isolates from Sri Lanka and 32 Old World Leishmania spp. strains found 8 patient isolates clustered with L. tropica and 19 with L. donovani. The L. tropica isolates from Sri Lanka shared markers with strain LtK26 reported decades ago in India, indicating they were not products of recent interspecies hybridization. Because L. tropica was isolated from patients with leishmaniasis in Sri Lanka, our findings indicate L. donovani is not the only cause of cutaneous leishmaniasis in Sri Lanka and potentially explains a haplotype that led to interspecies dermotropic L. donovani hybrids.


Asunto(s)
Leishmania tropica , Leishmaniasis Cutánea , Secuenciación Completa del Genoma , Sri Lanka , Humanos , Leishmania tropica/genética , Leishmania tropica/aislamiento & purificación , Leishmaniasis Cutánea/parasitología , Leishmaniasis Cutánea/diagnóstico , Filogenia , Genoma de Protozoos , Masculino , Femenino , Leishmania donovani/genética , Leishmania donovani/aislamiento & purificación , Adulto , Persona de Mediana Edad
2.
Nucleic Acids Res ; 48(10): 5511-5526, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32365184

RESUMEN

RNA binding proteins (RBPs) are the primary gene regulators in kinetoplastids as transcriptional control is nearly absent, making Leishmania an exceptional model for investigating methylation of non-histone substrates. Arginine methylation is an evolutionarily conserved protein modification catalyzed by Protein aRginine Methyl Transferases (PRMTs). The chromatin modifier PRMT7 is the only Type III PRMT found in higher eukaryotes and a restricted number of unicellular eukaryotes. In Leishmania major, PRMT7 is a cytoplasmic protein implicit in pathogenesis with unknown substrates. Using comparative methyl-SILAC proteomics for the first time in protozoa, we identified 40 putative targets, including 17 RBPs hypomethylated upon PRMT7 knockout. PRMT7 can modify Alba3 and RBP16 trans-regulators (mammalian RPP25 and YBX2 homologs, respectively) as direct substrates in vitro. The absence of PRMT7 levels in vivo selectively reduces Alba3 mRNA-binding capacity to specific target transcripts and can impact the relative stability of RBP16 in the cytoplasm. RNA immunoprecipitation analyses demonstrate PRMT7-dependent methylation promotes Alba3 association with select target transcripts and thus indirectly stabilizes mRNA of a known virulence factor, δ-amastin surface antigen. These results highlight a novel role for PRMT7-mediated arginine methylation of RBP substrates, suggesting a regulatory pathway controlling gene expression and virulence in Leishmania. This work introduces Leishmania PRMTs as epigenetic regulators of mRNA metabolism with mechanistic insight into the functional manipulation of RBPs by methylation.


Asunto(s)
Leishmania major/enzimología , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas de Unión al ARN/metabolismo , Regulación de la Expresión Génica , Leishmania major/genética , Metilación , Estabilidad Proteica
3.
Mol Cell Proteomics ; 18(7): 1271-1284, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30948621

RESUMEN

Leishmania parasite infections, termed the leishmaniases, cause significant global infectious disease burden. The lifecycle of the parasite embodies three main stages that require precise coordination of gene regulation to survive environmental shifts between sandfly and mammalian hosts. Constitutive transcription in kinetoplastid parasites means that gene regulation is overwhelmingly reliant on post-transcriptional mechanisms, yet strikingly few Leishmania trans-regulators are known. Using optimized crosslinking and deep, quantified mass spectrometry, we present a comprehensive analysis of 1400 mRNA binding proteins (mRBPs) and whole cell proteomes from the three main Leishmania lifecycle stages. Supporting the validity, although the crosslinked RBPome is magnitudes more enriched, the protein identities of the crosslinked and non-crosslinked RBPomes were nearly identical. Moreover, multiple candidate RBPs were endogenously tagged and found to associate with discrete mRNA target pools in a stage-specific manner. Results indicate that in L. mexicana parasites, mRNA levels are not a strong predictor of the whole cell expression or RNA binding potential of encoded proteins. Evidence includes a low correlation between transcript and corresponding protein expression and stage-specific variation in protein expression versus RNA binding potential. Unsurprisingly, RNA binding protein enrichment correlates strongly with relative replication efficiency of the specific lifecycle stage. Our study is the first to quantitatively define and compare the mRBPome of multiple stages in kinetoplastid parasites. It provides novel, in-depth insight into the trans-regulatory mRNA:Protein (mRNP) complexes that drive Leishmania parasite lifecycle progression.


Asunto(s)
Leishmania mexicana/genética , Parásitos/genética , Proteoma/metabolismo , Animales , Ontología de Genes , Estadios del Ciclo de Vida , Ratones Endogámicos BALB C , Análisis de Componente Principal , Proteómica , Proteínas Protozoarias/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Reproducibilidad de los Resultados , Transcriptoma/genética
4.
Mol Microbiol ; 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25294169

RESUMEN

Protein arginine methylation is a widely conserved post-translational modification performed by arginine methyltransferases (PRMTs). However, its functional role in parasitic protozoa is still under-explored. The Leishmania major genome encodes five PRMT homologs, including PRMT7. Here we show that LmjPRMT7 expression and arginine monomethylation are tightly regulated in a lifecycle stage-dependent manner. LmjPRMT7 levels are higher during the early promastigote logarithmic phase, negligible at stationary and late-stationary phases and rise once more post-differentiation to intracellular amastigotes. Immunofluorescence and co-immunoprecipitation studies demonstrate that LmjPRMT7 is a cytosolic protein associated with several RNA-binding proteins (RBPs) from which Alba20 is monomethylated only in LmjPRMT7-expressing promastigote stages. In addition, Alba20 protein levels are significantly altered in stationary promastigotes of the LmjPRMT7 knockout mutant. Considering RBPs are well-known mammalian PRMT substrates, our data suggest that arginine methylation via LmjPRMT7 may modulate RBP function during Leishmania spp. lifecycle progression. Importantly, genomic deletion of the LmjPRMT7 gene leads to an increase in parasite infectivity both in vitro and in vivo, while lesion progression is significantly reduced in LmjPRMT7-overexpressing parasites. This study is the first to describe a role of Leishmania protein arginine methylation in host-parasite interactions.

5.
bioRxiv ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38903060

RESUMEN

Diarrheal diseases are the second leading cause of death in children worldwide. Epidemiological studies show that co-infection with Giardia intestinalis decreases the severity of diarrhea. Here, we show that Giardia is highly prevalent in the stools of asymptomatic school-aged children. It orchestrates a Th2 mucosal immune response, characterized by increased antigen-specific Th2 cells, IL-25, Type 2-associated cytokines, and goblet cell hyperplasia. Giardia infection expanded IL-10-producing Th2 and GATA3+ Treg cells that promoted chronic carriage, parasite transmission, and conferred protection against Toxoplasma gondii-induced lethal ileitis and DSS-driven colitis by downregulating proinflammatory cytokines, decreasing Th1/Th17 cell frequency, and preventing collateral tissue damage. Protection was dependent on STAT6 signaling, as Giardia-infected STAT6-/- mice no longer regulated intestinal bystander inflammation. Our findings demonstrate that Giardia infection reshapes mucosal immunity toward a Type 2 response, which confers a mutualistic protection against inflammatory disease processes and identifies a critical role for protists in regulating mucosal defenses.

6.
bioRxiv ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39372777

RESUMEN

In murine models of visceral leishmaniasis (VL), parasitization of resident Kupffer cells (resKCs) is responsible for early growth of Leishmania infantum in the liver, which leads to granuloma formation and eventual parasite control. We employed the chronic VL model, and revealed an open niche established by KCs death and their migration outside of the sinusoids, resulting in their gradual replacement by monocyte-derived KCs (moKCs). While early granulomas were composed of resKCs, late granulomas were found outside of the sinusoids and contained resKC-derived macrophages, and monocyte-derived macrophages (momacs). ResKCs and moKCs within the sinusoids were identified as homeostatic/regulatory cells, while resKC-derived macrophages and momacs within late granulomas were pro-inflammatory. Despite the infection being largely confined to the resKC-derived macrophages, in the absence of monocyte recruitment, parasite control was strongly compromised. Macrophage heterogeneity, involving migration and reprogramming of resKCs, along with recruitment of monocyte-derived cells, is a hallmark of granuloma maturation and hepatic immunity in VL.

7.
Acta Trop ; 245: 106979, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37391025

RESUMEN

Leishmaniasis is a neglected tropical disease caused by protozoan parasites of genus Leishmania, and transmitted by different species of Phlebotomine sand flies. More than 20 species of Leishmania are known to cause disease in humans and other animals. Leishmania donovani species complex is known to have a vast diversity of clinical manifestations in humans, but underlying mechanisms for such diversity are yet unknown. Long believed to be strictly asexual, Leishmania have been shown to undergo a cryptic sexual cycle inside its sandfly vector. Natural populations of hybrid parasites have been associated with the rise of atypical clinical outcomes in the Indian subcontinent (ISC). However, formal demonstration of genetic crossing in the major endemic sandfly species in the ISC remain unexplored. Here, we investigated the ability of two distinct variants of L. donovani associated with strikingly different forms of the disease to undergo genetic exchange inside its natural vector, Phlebotomus argentipes. Clinical isolates of L. donovani either from a Sri Lankan cutaneous leishmaniasis (CL) patient or an Indian visceral leishmaniasis (VL) patient were genetically engineered to express different fluorescent proteins and drug-resistance markers and subsequently used as parental strains in experimental sandfly co-infection. After 8 days of infection, sand flies were dissected and midgut promastigotes were transferred into double drug-selective media. Two double drug-resistant, dual fluorescent hybrid cell lines were recovered, which after cloning and whole genome sequencing, were shown to be full genomic hybrids. This study provides the first evidence of L. donovani hybridization within its natural vector Ph. argentipes.


Asunto(s)
Leishmania donovani , Leishmaniasis Visceral , Phlebotomus , Psychodidae , Animales , Humanos , Phlebotomus/parasitología , Leishmania donovani/genética , Leishmaniasis Visceral/epidemiología , Psychodidae/parasitología , Hibridación Genética
8.
Pathogens ; 11(5)2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35631101

RESUMEN

Despite major advances over the last decade in our understanding of Leishmania reproductive strategies, the sexual cycle in Leishmania has defied direct observation and remains poorly investigated due to experimental constraints. Here, we summarize the findings and conclusions drawn from genetic analysis of experimental hybrids generated in sand flies and highlight the recent advances in generating hybrids in vitro. The ability to hybridize between culture forms of different species and strains of Leishmania should invite more intensive investigation of the mechanisms underlying genetic exchange and provide a rich source of recombinant parasites for future genetic analyses.

9.
mBio ; 13(6): e0285822, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36394334

RESUMEN

Genetic exchange between different Leishmania strains in the sand fly vector has been experimentally demonstrated and is supported by population genetic studies. In nature, opportunities for Leishmania interstrain mating are restricted to flies biting multiply infected hosts or through multiple bites of different hosts. In contrast, self-mating could occur in any infected sand fly. By crossing two recombinant lines derived from the same Leishmania major strain, each expressing a different drug-resistance marker, self-hybridization in L. major was confirmed in a natural sand fly vector, Phlebotomus duboscqi, and in frequencies comparable to interstrain crosses. We provide the first high resolution, whole-genome sequencing analysis of large numbers of selfing progeny, their parents, and parental subclones. Genetic exchange consistent with classical meiosis is supported by the biallelic inheritance of the rare homozygous single nucleotide polymorphisms (SNPs) that arose by mutation during the generation of the parental clones. In contrast, heterozygous SNPs largely failed to be transmitted in Mendelian ratios for reasons not understood. SNPs that were heterozygous in both parents, however, recombined to produce homozygous alleles in some hybrids. For trisomic chromosomes present in both parents, transmittal to the progeny was only altered by self-hybridization, involving a gain or loss of somy in frequencies predicted by a meiotic process. Whole-genome polyploidization was also observed in the selfing progeny. Thus, self-hybridization in Leishmania, with its potential to occur in any infected sand fly, may be an important source of karyotype variation, loss of heterozygosity, and functional diversity. IMPORTANCE Leishmania are parasitic protozoa that cause a wide spectrum of diseases collectively known as the leishmaniases. Sexual reproduction in Leishmania has been proposed as an important source of genetic diversity and has been formally demonstrated to occur inside the sand fly vector midgut. Nevertheless, in the wild, opportunities for genetic exchange between different Leishmania species or strains are restricted by the capacity of different Leishmania strains to colonize the same sand fly. In this work, we report the first high resolution, whole-genome sequence analysis of intraclonal genetic exchange as a type of self-mating in Leishmania. Our data reveal that self-hybridization can occur with comparable frequency as interstrain mating under experimental lab conditions, leading to important genomic alterations that can potentially take place within every naturally infected sand fly.


Asunto(s)
Leishmania major , Phlebotomus , Psychodidae , Animales , Leishmania major/genética , Phlebotomus/parasitología , Psychodidae/parasitología , Reproducción , Mutación
10.
Trends Parasitol ; 37(5): 367-369, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33773911

RESUMEN

Our understanding of regulatory factors in Leishmania differentiation has long been restricted by the available genetic tools, but the availability of CRISPR/Cas9 has changed the landscape forever. Recently, Baker and Catta-Preta et al. applied Cas9 editing and kinome-wide bar-seq to dissect the function of 204 kinases in the Leishmania mexicana life cycle.


Asunto(s)
Leishmania , Animales , Sistemas CRISPR-Cas , Leishmania/genética , Estadios del Ciclo de Vida
11.
PLoS Negl Trop Dis ; 15(3): e0009230, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33651805

RESUMEN

Leishmania major is the main causative agent of cutaneous leishmaniasis in the Old World. In Leishmania parasites, the lack of transcriptional control is mostly compensated by post-transcriptional mechanisms. Methylation of arginine is a conserved post-translational modification executed by Protein Arginine Methyltransferase (PRMTs). The genome from L. major encodes five PRMT homologs, including the cytosolic protein associated with several RNA-binding proteins, LmjPRMT7. It has been previously reported that LmjPRMT7 could impact parasite infectivity. In addition, a more recent work has clearly shown the importance of LmjPRMT7 in RNA-binding capacity and protein stability of methylation targets, demonstrating the role of this enzyme as an important epigenetic regulator of mRNA metabolism. In this study, we unveil the impact of PRMT7-mediated methylation on parasite development and virulence. Our data reveals that higher levels of LmjPRMT7 can impair parasite pathogenicity, and that deletion of this enzyme rescues the pathogenic phenotype of an attenuated strain of L. major. Interestingly, lesion formation caused by LmjPRMT7 knockout parasites is associated with an exacerbated inflammatory reaction in the tissue correlated with an excessive neutrophil recruitment. Moreover, the absence of LmjPRMT7 also impairs parasite development within the sand fly vector Phlebotomus duboscqi. Finally, a transcriptome analysis shed light onto possible genes affected by depletion of this enzyme. Taken together, this study highlights how post-transcriptional regulation can affect different aspects of the parasite biology.


Asunto(s)
Leishmania major/enzimología , Leishmaniasis Cutánea/patología , Neutrófilos/fisiología , Proteína Metiltransferasas/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Eliminación de Gen , Regulación Enzimológica de la Expresión Génica , Leishmania major/genética , Leishmania major/metabolismo , Leishmaniasis Cutánea/parasitología , Ratones , Proteína Metiltransferasas/genética
12.
PLoS Negl Trop Dis ; 9(9): e0004018, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26366580

RESUMEN

BACKGROUND: Leishmaniasis is a complex disease in which clinical outcome depends on factors such as parasite species, host genetics and immunity and vector species. In Brazil, Leishmania (Viannia) braziliensis is a major etiological agent of cutaneous (CL) and mucosal leishmaniasis (MCL), a disfiguring form of the disease, which occurs in ~10% of L. braziliensis-infected patients. Thus, clinical isolates from patients with CL and MCL may be a relevant source of information to uncover parasite factors contributing to pathogenesis. In this study, we investigated two pairs of L. (V.) braziliensis isolates from mucosal (LbrM) and cutaneous (LbrC) sites of the same patient to identify factors distinguishing parasites that migrate from those that remain at the primary site of infection. METHODOLOGY/PRINCIPAL FINDINGS: We observed no major genomic divergences among the clinical isolates by molecular karyotype and genomic sequencing. RT-PCR revealed that the isolates lacked Leishmania RNA virus (LRV). However, the isolates exhibited distinct in vivo pathogenesis in BALB/c mice; the LbrC isolates were more virulent than the LbrM isolates. Metabolomic analysis revealed significantly increased levels of 14 metabolites in LbrC parasites and 31 metabolites in LbrM parasites that were mainly related to inflammation and chemotaxis. A proteome comparative analysis revealed the overexpression of LbrPGF2S (prostaglandin f2-alpha synthase) and HSP70 in both LbrC isolates. Overexpression of LbrPGF2S in LbrC and LbrM promastigotes led to an increase in infected macrophages and the number of amastigotes per cell at 24-48 h post-infection (p.i.). CONCLUSIONS/SIGNIFICANCE: Despite sharing high similarity at the genome structure and ploidy levels, the parasites exhibited divergent expressed genomes. The proteome and metabolome results indicated differential profiles between the cutaneous and mucosal isolates, primarily related to inflammation and chemotaxis. BALB/c infection revealed that the cutaneous isolates were more virulent than the mucosal parasites. Furthermore, our data suggest that the LbrPGF2S protein is a candidate to contribute to parasite virulence profiles in the mammalian host.


Asunto(s)
Leishmania braziliensis/genética , Leishmania braziliensis/aislamiento & purificación , Leishmaniasis Mucocutánea/microbiología , Metaboloma , Membrana Mucosa/microbiología , Proteoma , Piel/microbiología , Animales , Brasil , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Leishmaniasis Mucocutánea/patología , Ratones Endogámicos BALB C , Membrana Mucosa/patología , Piel/patología
13.
Int J Biochem Cell Biol ; 42(10): 1661-71, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20601086

RESUMEN

Although several stage-specific genes have been identified in Leishmania, the molecular mechanisms governing developmental gene regulation in this organism are still not well understood. We have previously reported an attenuation of virulence in Leishmania major and L. braziliensis carrying extra-copies of the spliced leader RNA gene. Here, we surveyed the major differences in proteome and transcript expression profiles between the spliced leader RNA overexpressor and control lines using two-dimensional gel electrophoresis and differential display reverse transcription PCR, respectively. Thirty-nine genes related to stress response, cytoskeleton, proteolysis, cell cycle control and proliferation, energy generation, gene transcription, RNA processing and post-transcriptional regulation have abnormal patterns of expression in the spliced leader RNA overexpressor line. The evaluation of proteolytic pathways in the mutant revealed a selective increase of cysteine protease activity and an exacerbated ubiquitin-labeled protein population. Polysome profile analysis and measurement of cellular protein aggregates showed that protein translation in the spliced leader RNA overexpressor line is increased when compared to the control line. We found that L. major promastigotes maintain homeostasis in culture when challenged with a metabolic imbalance generated by spliced leader RNA surplus through modulation of intracellular proteolysis. However, this might interfere with a fine-tuned gene expression control necessary for the amastigote multiplication in the mammalian host.


Asunto(s)
Proteasas de Cisteína/metabolismo , Leishmania major/genética , Proteínas Protozoarias/metabolismo , ARN Lider Empalmado/metabolismo , Células Cultivadas , Proteasas de Cisteína/genética , Activación Enzimática/genética , Perfilación de la Expresión Génica , Homeostasis/genética , Hibridación Fluorescente in Situ , Leishmania major/patogenicidad , Espectrometría de Masas , Mutación/genética , Polirribosomas/metabolismo , Proteoma/metabolismo , Proteínas Protozoarias/genética , ARN Lider Empalmado/genética , Ubiquitina/metabolismo , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA