Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Environ Geochem Health ; 46(7): 226, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849664

RESUMEN

The red deer is an ungulate and large game species. The contamination of the ecosystems by metal(loid)s may lead to the exposure of animals (as well as humans) through water and food resources. The direct contact of hunters and wild animal meat consumers with deer carcasses may be a potential contaminant source. This study aimed to determine the metal(loid)s' concentrations in the liver and kidney of red deer from two regions of Portugal (Idanha-a-Nova and Lousã), and to relate these with histopathologic lesions. Thirteen young male deer were submitted to metal(loid) determination (As, Cd, Co, Cr, Cu, Pb, and Zn) by inductively coupled plasma mass spectrophotometry (ICP-MS) and histopathology examination. Renal Cd (8.072 ± 5.766 mg/kg dw) and hepatic Pb (3.824 ± 6.098 mg/kg dw) mean values were high, considering the maximum values for consumption established by the European Commission. The hepatic mean value of Cu was significantly higher in Idanha-a-Nova (150.059 ± 33.321 mg/kg dw), and it is at the Cu toxicity limit considered for ruminants (150 mg/kg). The pollution induced by Panasqueira mines (Castelo Branco) may be a possible explanation for some of the findings, especially the higher values of hepatic Cu and Pb found in Idanha-a-Nova deer. These results have high importance under a One Health perspective, since they have implications in public health, and pose at risk the imbalance of animal populations and ecosystems.


Asunto(s)
Ciervos , Riñón , Hígado , Metales Pesados , Animales , Metales Pesados/análisis , Masculino , Hígado/metabolismo , Humanos , Portugal , Riñón/efectos de los fármacos , Metaloides/análisis , Metaloides/toxicidad , Monitoreo del Ambiente , Contaminantes Ambientales , Exposición a Riesgos Ambientales
2.
J Environ Manage ; 344: 118515, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37418925

RESUMEN

Soil and water contamination by potentially toxic metals (PTMs) has exerted adverse environmental impacts, which justifies studies of promising remediation alternatives. This article investigated the competitive sorption of cadmium (Cd), lead (Pb), and zinc (Zn) onto peat, compost, and biochar derived from the organic fraction of municipal solid waste (OFMSW), but its main innovation was the post-sorption assessment. The effects of contact time on competition between contaminants were systematically analyzed by batch experiments and the effectiveness of the sorption process was evaluated in desorption tests (H2O, HCl, NaOH, and NaCl) and sequential extraction. Kinetic data were well-fitted to pseudo-first-order (PFO) and pseudo-second-order (PSO) models and the intra-particle diffusion model revealed the existence of multiple linear regions, indicating the sorption process was controlled by a multi-step mechanism. The sorption capacities followed a biochar > compost > peat order, with biochar retaining more than 99% of Cd, Pb, and Zn in all samples. The general order of desorption percentage was peat > compost > biochar, with a below 0.60% biochar release, suggesting the importance of chemical processes. HCl solution (more acid pH) showed the highest release of previously sorbed contaminants and, therefore, can be employed for the reuse of sorbents (sorption/desorption cycles). The only exception was Pb desorption on biochar, with maximum release in NaOH solution. A negative Pearson correlation with F1 (acid-soluble/exchangeable fraction) for Cd and Zn and a positive one with the other steps were reported. Pb exhibited an opposite behavior, showing the highest sorption performances and the lowest desorption rates for all sorbents, justified by positive correlations with F4 (residual fraction) and negative ones with desorption. The findings suggest the evaluated sorbents, especially compost and biochar, can be effective materials in the simultaneous sorption of Cd, Pb, and Zn in wastewater, as well as an amendment for PTMs immobilization in contaminated soils.


Asunto(s)
Compostaje , Metales Pesados , Contaminantes del Suelo , Zinc , Cadmio , Plomo , Suelo , Hidróxido de Sodio , Carbón Orgánico , Contaminantes del Suelo/análisis , Metales Pesados/análisis
3.
Environ Res ; 204(Pt A): 111988, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34480948

RESUMEN

The historic contamination of water and soils by arsenic (As) is an extremely alarming environmental and public health issue worldwide. This study investigated the relationship between As sorption and physicochemical properties of composts and biochars derived from the organic fraction of municipal solid wastes (OFMSW) towards the development of promising sorbents with value-added solid wastes management solutions. The sorbents were characterized and their effectiveness on the As sorption was tested. Several isothermal and kinetic sorption models were used for the prediction of sorption. Composts did not show promising sorption capacities, and in some cases, the As immobilization was practically null. In contrast, biochars achieved higher sorption performance, and the experimental data fitted well on Dubinin-Rabushkevich and Langmuir models, with higher R2 values. The maximum sorption capacities of BC700 estimated by such models were 6.495 and 170.252 mg g-1, respectively, whereas those of BC500 estimated by D-R and Langmuir models were only 0.066 and 0.070 mg g-1, respectively. In sorption kinetics, As was retained onto biochars at a faster first stage, reaching equilibrium after approximately 1 h and 2 h for initial concentrations of 10 and 100 mg L-1. The pseudo-second-order, Ritchie's second-order, Ritchie's, and Elovich models more adequately described the sorption kinetics of As onto biochars with high R2 values. Overall, the complexation and precipitation were predominant mechanisms for As sorption by OFMSW-derived biochars. Furthermore, the mathematical models indicated contributions arise from physisorption and external and internal diffusion mechanisms. Although BC700 can immobilize large As amounts, the gastric phase of the oral bioaccessibility test revealed more than 80% of the sorbed As could be released under conditions similar to a human stomach (pH~1.2). Such conclusions have given important insights about the refining of effective and eco-friendly remediation technologies for the management and rehabilitation of As-contaminated soil and water, particularly in developing countries.


Asunto(s)
Arsénico , Compostaje , Adsorción , Carbón Orgánico , Humanos , Cinética , Residuos Sólidos
4.
J Environ Manage ; 321: 115968, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35988405

RESUMEN

The development of waste-derived sorbents to immobilize potentially toxic elements (PTEs) is a promising strategy, contributing to the achievement of sustainable development goals (SDGs). Therefore, this study aimed to assess the sorption performance of cadmium (Cd), lead (Pb) and zinc (Zn), comparing sorbents derived from organic fraction of municipal solid waste (composts and biochars) with peat. The physicochemical characterization, equilibrium of sorption, post-sorption analyzes and bioaccessibility were investigated. Results showed that the sorbents have distinct characteristics; however, each material have their particularities favorable to sorption. For instance, peat and composts have the highest cation exchange capacity (800-1100 mmolc kg-1), while biochar produced at 700 °C has the highest specific surface area (91.21 m2 g-1). The sorption equilibrium data revealed the actual sorption capacity and was well explained by the Freundlich and Langmuir isotherms and, in some cases, by the Dubinin-Radushkevich model. Post-sorption analyzes indicated the occurrence of several sorption mechanisms, driven by the physicochemical properties. Electrostatic interaction stood out for peat and compost. The FTIR spectrum for peat proved the complexation with oxygenated functional groups. The composts showed variations in the released cations (e.g. Ca2+ and K+), indicating cation exchange. Differently, for biochars, the XRD patterns showed that precipitation or coprecipitation seems to be one of the main mechanisms, especially for Cd and Pb. Regarding human bioaccessibility, the results of the gastric phase simulation (pH∼1.20) revealed lower percentages of Pb (33-81%) than Cd (91-99%) or Zn (82-99%), especially for the highest concentrations. Nevertheless, in numerical terms, all bioaccessible concentrations inspire care. In conclusion, among the sorbents, composts and biochars presented the best sorption performances and, therefore, have great potential for environmental applications. Furthermore, the bioaccessibility findings indicate that these assays, still little used in experiments with sorbents, are an important tool that should be better explored in the assessment of the environmental risk associated with contamination.


Asunto(s)
Cadmio , Compostaje , Adsorción , Cadmio/química , Carbón Orgánico/química , Humanos , Plomo , Suelo , Zinc
5.
Arch Microbiol ; 203(7): 3751-3766, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34143270

RESUMEN

The term extremophile was suggested more than 30 years ago and represents microorganisms that are capable of developing and living under extreme conditions, these conditions being particularly hostile to other types of microorganisms and to humankind. In terrestrial hydrothermal sites, like hot springs, "mud pools", solfataras, and geysers, the dominant extreme conditions are high temperature, low or high pH, and high levels of salinity. The diversity of microorganisms inhabiting these sites is determined by the conditions of the environment. Organisms belonging to the domains Archaea and Bacteria are more represented than the one belonging to Eukarya. Eukarya members tend to be less present because of their lower tolerance to higher temperatures, however, they perform important ecosystem processes when present. Both prokaryotes and eukaryotes have morphological and physical adaptations that allow them to colonize extreme environments. Microbial mats are complex associations of microorganisms that help the colonization of more extreme systems. In this review, a characterization of prokaryotic and eukaryotic organisms that populate terrestrial hydrothermal systems are made.


Asunto(s)
Archaea , Bacterias , Biodiversidad , Eucariontes , Manantiales de Aguas Termales , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Eucariontes/clasificación , Eucariontes/genética
6.
Neuroimmunomodulation ; 27(3): 131-141, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33508847

RESUMEN

INTRODUCTION: IL-1ß, a cytokine from the innate immune response, is well known for its proinflammatory effects and stimulating activity on the hypothalamus-pituitary-adrenal axis, leading to the pituitary synthesis of adrenocorticotropic hormone followed by cortisol (and dehydroepiandrosterone - DHEA) release by the adrenal gland. While IL-1ß modulates the adrenal steroidogenesis at the central level, it is unclear whether it also exerts an effect on the adrenal gland. METHOD: We studied the effect of IL-1ß on adrenal steroid production and steroidogenic enzyme RNA expression in the human cell line NCI-H295R. We also explored eventual changes in the microRNA (miRNA) profile from IL-1ß-treated NCI-H295R cells. RESULTS: Transcripts encoding IL-1ß receptors 1 and 2 were noticeable in the cell line, with cortisol and DHEA production showing a subtle increase after cytokine treatment. Transcripts from key enzymes in the steroidogenic pathway were analyzed, with no noticeable changes on them. The miRNA profile was modified by IL-1ß treatment to an extent which bears some relationship with the regulatory mechanisms underlying adrenal steroid production. Since orphan nuclear receptors NR4As have emerged as potential key factors for coordinating inflammatory and metabolic responses, cell expression studies were also carried out to show an NR4As transcript augmentation following IL-1ß treatment. DISCUSSION/CONCLUSIONS: The subtle increase in adrenal steroid production in response to IL-1ß stimulation without any modification in the transcription of the steroidogenic enzymes analyzed suggests an additional inflammatory/anti-inflammatory loop, wherein NR4As receptors may participate. Besides its physiological role, this process might be implied in pathological states accompanied by an unbalanced immune-endocrine relationship.


Asunto(s)
MicroARNs , Receptores Nucleares Huérfanos , Línea Celular , Humanos , Hidrocortisona , MicroARNs/genética , Esteroides
7.
Environ Geochem Health ; 40(5): 1767-1784, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28281140

RESUMEN

New lines of evidence suggest that less than 10% of neurodegenerative diseases have a strict genetic aetiology and other factors may be prevalent. Environmental exposures to potentially toxic elements appear to be a risk factor for Parkinson's, Alzheimer's and sclerosis diseases. This study proposes a multidisciplinary approach combining neurosciences, psychology and environmental sciences while integrating socio-economic, neuropsychological, environmental and health data. We present the preliminary results of a neuropsychological assessment carried out in elderly residents of the industrial city of Estarreja. A battery of cognitive tests and a personal questionnaire were administered to the participants. Multivariate analysis and multiple linear regression analysis were used to identify potential relationships between the cognitive status of the participants and environmental exposure to potentially toxic elements. The results suggest a relationship between urinary PTEs levels and the incidence of cognitive disorders. They also point towards water consumption habits and profession as relevant factors of exposure. Linear regression models show that aluminium (R 2 = 38%), cadmium (R 2 = 11%) and zinc (R 2 = 6%) are good predictors of the scores of the Mini-Mental State Examination cognitive test. Median contents (µg/l) in groundwater are above admissible levels for drinking water for aluminium (371), iron (860), manganese (250), and zinc (305). While the World Health Organization does not provide health-based reference values for aluminium, results obtained from this study suggest that it may have an important role in the cognitive status of the elderly. Urine proved to be a suitable biomarker of exposure both to elements with low and high excretion rates.


Asunto(s)
Disfunción Cognitiva/inducido químicamente , Exposición a Riesgos Ambientales , Contaminantes Ambientales/toxicidad , Anciano , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/psicología , Femenino , Agua Subterránea/química , Humanos , Incidencia , Masculino , Metales Pesados/toxicidad , Pruebas Neuropsicológicas , Portugal/epidemiología , Factores de Riesgo , Contaminantes Químicos del Agua/toxicidad
8.
Environ Geochem Health ; 39(3): 565-589, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27222160

RESUMEN

Panasqueira mine is a tin-tungsten mineralization hosted by metasediments with quartz veins rich in ferberite. The mineralization also comprises wolframite, cassiterite, chalcopyrite, several sulfides, carbonates and silver sulfosalts. The mining and beneficiation processes produce arsenic-rich mine wastes laid up in huge tailings (Barroca Grande and Rio tailings). The contents of As, Cd, Cr, Cu, Pb and Zn were estimated in rhizosphere soils, irrigation waters, road dusts and in potatoes, cabbages, lettuces and beans, collected on local gardens of four neighborhood Panasqueira mine villages: S. Francisco de Assis (SFA) and Barroca suffering the influence of tailings; Unhais-o-Velho and Casegas considered as non-polluted areas. The mean concentrations of metals in rhizosphere soils and vegetables exceed the reference guidelines values and seem to be linked to the sulfides. The rhizosphere ecological risks were ranked in the order of Cd > As > Cu > Pb > Zn > Cr and SFA > Barroca > Casegas > Unhais-o-Velho. Metal concentrations, in vegetables, were found in the order of lettuce > cabbage > potatoes and SFA > Barroca > Casegas > Unhais-o-Velho. For cabbages and lettuces, the tendency of contamination is roots > leaves and for potatoes is roots > leaves > tubers. The risk for residents, due to ingesting of metals/metalloid, by consuming vegetables grown around the sampling area, was calculated and the result indicates that the inhabitants of these villages are probably exposed to some potential health risks through the intake of heavy metals and metalloids via consuming their vegetables.


Asunto(s)
Metales Pesados/análisis , Minería , Contaminantes del Suelo/análisis , Verduras/química , Contaminantes Químicos del Agua/análisis , Riego Agrícola , Arsénico/análisis , Cadmio/análisis , Cromo/análisis , Cobre/análisis , Monitoreo del Ambiente , Plomo/análisis , Portugal , Medición de Riesgo , Estaño , Tungsteno , Zinc/análisis
9.
Environ Monit Assess ; 187(3): 135, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25702148

RESUMEN

Through the years, mining and beneficiation processes in Panasqueira Sn-W mine (Central Portugal) produced large amounts of As-rich mine wastes laid up in huge tailings and open-air impoundments (Barroca Grande and Rio tailings) that are the main source of pollution in the surrounding area once they are exposed to the weathering conditions leading to the formation of acid mine drainage (AMD) and consequently to the contamination of the surrounding environments, particularly soils. The active mine started the exploration during the nineteenth century. This study aims to look at the extension of the soil pollution due to mining activities and tailing erosion by combining data on the degree of soil contamination that allows a better understanding of the dynamics inherent to leaching, transport, and accumulation of some potential toxic elements in soil and their environmental relevance. Soil samples were collected in the surrounding soils of the mine, were digested in aqua regia, and were analyzed for 36 elements by inductively coupled plasma mass spectrometry (ICP-MS). Selected results are that (a) an association of elements like Ag, As, Bi, Cd, Cu, W, and Zn strongly correlated and controlled by the local sulfide mineralization geochemical signature was revealed; (b) the global area discloses significant concentrations of As, Bi, Cd, and W linked to the exchangeable and acid-soluble bearing phases; and (c) wind promotes the mechanical dispersion of the rejected materials, from the milled waste rocks and the mineral processing plant, with subsequent deposition on soils and waters. Arsenic- and sulfide-related heavy metals (such as Cu and Cd) are associated to the fine materials that are transported in suspension by surface waters or associated to the acidic waters, draining these sites and contaminating the local soils. Part of this fraction, especially for As, Cd, and Cu, is temporally retained in solid phases by precipitation of soluble secondary minerals (through the precipitation of hydrated metal sulfates) in warm, dry periods, but such minerals are easily dissolved during rainy periods. Climate is an important instability factor, and the hot and dry summers and cold, rainy, and windy winters in this region are physical phenomena that enhance the good receptivity of these soils to retain some of the metals present in the primary and also the secondary mineralogy. Considering the obtained results from both the sequential chemical extraction and the environmental risk assessment according to the risk assessment code, Ag, Cd, Cu, and Zn are classified with very high risk while As is classified with medium risk.


Asunto(s)
Monitoreo del Ambiente/métodos , Minería , Contaminantes del Suelo/análisis , Arsénico/análisis , Ambiente , Contaminación Ambiental/análisis , Contaminación Ambiental/estadística & datos numéricos , Metales/análisis , Metales Pesados/análisis , Minerales/análisis , Portugal , Suelo , Sulfuros/análisis
10.
Heliyon ; 10(4): e25872, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38434016

RESUMEN

The fraudulent mislabelling of seafood geographic origin has been growing due to complex supply chains and growing consumer demand. To address this issue, seafood traceability tools, such as those based on elemental fingerprints (EF) of bivalve shells, have been successfully used to confirm their harvesting location. However, despite the usefulness of these methodologies, there is still room for optimization. Therefore, this study evaluated the effects of a routine procedure during bivalve shells preparation for ICP-MS analysis - their pretreatment with H2O2 to remove organic components. More specifically, the present study evaluated the effects of H2O2 on i) the elemental fingerprints of shells of two bivalve species (Ruditapes philippinarum and Cerastoderma edule) from four different locations over the north-western and the western Iberian coast, and ii) their influence on the accuracy of models (based on the EF of shells) used to confirm the geographic origin of these species. Significant differences were observed between untreated and pretreated shells of R. philippinarum (p within location ranging from 0.0001 to 0.0011) and C. edule (p ranging from 0.0001 to 0.0007 for C. edule) for both their elemental fingerprints as a whole and several individual elements. The accuracy of the models employed to determine the origin of the two bivalve species, using i) untreated shells, ii) pretreated shells, and iii) both pretreated and untreated shells grouped per location, was high, with the models accurately predicting the geographic origin of 100, 90 and 95% of R. philippinarum and 95, 100 and 95% of C. edule, respectively. These results show that the shifts in the EF of bivalve shells promoted by treating them with H2O2 prior to ICP-MS analysis did not affect the accuracy of the models used to confirm the geographic origin of both bivalve species. Therefore, the need to pre-treat bivalve shells with H2O2 can be dismissed in future studies addressing the traceability of bivalves when using ICP-MS, thus contributing to reducing environmental impacts and economic costs associated with this procedure, as well as the time required to obtain results.

11.
Vet Res Commun ; 48(2): 1015-1023, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38052737

RESUMEN

Wild boars (Sus scrofa) are part of the hunting economy and are highly consumed in the Iberian Peninsula, including in the Castile and Leon regions. As zoonotic diseases, chemical pollutants in wild boars' internal tissues should be interpreted as evidence of environmental contamination and a matter of concern for animal, human and ecosystem health; in other words, a One Health concern. Twenty-eight wild boars' livers and kidneys (n = 28) from Castile and Leon were submitted to metal(loid) determination (As, Cd, Co, Cr, Cu, Ni, Pb, and Zn) with inductively coupled plasma mass spectrophotometry (ICP-MS) and histopathological exam. Cd levels, especially in the kidneys (7.063 ± 7.271 mg/kg dw), were the most concerning results, considering the calculated maximum values for consumption (EC No. 915/2023) (2.491 mg/kg dw or 1.0 mg/kg ww). Wild boars with hydropic changes in the liver presented higher concentrations of Ni. Thus, the metal(loid) contamination of wild boar carcasses seems to be a "no trace" but very relevant problem that should raise awareness of a more accurate monitoring program and other strategies to avoid public health consequences.


Asunto(s)
Metaloides , Metales Pesados , Humanos , Animales , Porcinos , Cadmio/análisis , Metaloides/análisis , Salud Pública , Ecosistema , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Sus scrofa
12.
Animals (Basel) ; 14(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38731365

RESUMEN

Diopatra neapolitana Delle Chiaje, 1841 (Annelida, Onuphidae) is one of the most exploited polychaete species in European waters, particularly in Ria de Aveiro, a coastal lagoon in mainland Portugal, where the overexploitation of this resource has led to a generalized decline of local populations. In an attempt to reduce the impact of harvesting, several management actions were implemented, but illegal poaching still fuels a parallel economy that threatens the sustainable use of this marine resource. The present study evaluated the combination of fatty acid profiles and elemental fingerprints of the whole body and jaws, respectively, of D. neapolitana collected from four harvesting locations within Ria de Aveiro in order to determine if their geographic origin could be correctly assigned post-harvesting. Results showed that both fatty acid profiles and elemental fingerprints differ significantly among locations, discriminating the geographic origin with higher accuracy when combining these two natural barcodes than when employing each individually. The present work can, therefore, contribute to the implementation of an effective management plan for the sustainable use of this marine resource, making it possible to detect if D. neapolitana was sourced from no-take zones and if it was collected from the place of origin claimed by live bait traders.

13.
Chemosphere ; 352: 141521, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395370

RESUMEN

Contamination by potentially toxic metals and metalloids (PTMs) has become a significant health and environmental issue worldwide. Sorption has emerged as one of the most prominent strategies for remediating both soil and water contamination. New sorbents are being developed to provide economically viable and environmentally sound alternatives, in alignment with the principles of the Sustainable Development Goals. This research aimed to assess the potential effects on human health and environmental toxicity following the sorption of cadmium (Cd), lead (Pb), and zinc (Zn) using peat, compost, and biochar as sorbents. The peat was collected in Brazil, a country with a tropical climate, while the compost and biochar were produced from the organic fraction of municipal solid waste (OFMSW). In terms of bioaccessibility, the results showed the following order: compost < biochar < peat for Pb, and compost < peat < biochar for Cd and Zn. There was a significant growth inhibition for Eruca sativa and Zea mays exposed to increasing concentrations of PTMs treated with peat and compost. The presence of contaminants played a decisive role on immobilization of neonates of Ceriodaphnia silvestrii after treatments with compost and, especially, peat. However, the biochar addition rate caused a significant influence on the outcomes of ecotoxicity across all tested species. Although the samples treated with biochar exhibited lower residual concentrations of PTMs than those treated with compost and peat, the inherent toxicity of biochar might be attributed to the material itself. The exposure to residual PTM concentrations post-desorption caused ecotoxic effects on tested species, emphasizing the need to assess PTM desorption potential. Peat, compost, and biochar are promising alternatives for the sorption of PTMs, but the addition rates must be properly adjusted to avoid the occurrence of undesirable ecotoxicological effects. This research offers valuable insights for sustainable environmental management and protection by thoroughly investigating the impacts of different sorbents and contaminants on aquatic and terrestrial ecosystems.


Asunto(s)
Compostaje , Metales Pesados , Contaminantes del Suelo , Humanos , Recién Nacido , Cadmio/toxicidad , Suelo , Plomo/toxicidad , Ecosistema , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Carbón Orgánico , Zinc/toxicidad , Metales Pesados/análisis
14.
Environ Sci Pollut Res Int ; 31(8): 11983-11994, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38225500

RESUMEN

The western-European hedgehog (Erinaceus europaeus) is an insectivore with a wide distribution in Portugal and a potential tool for biomonitoring relevant One Health hazards, including heavy metal(loid)s' pollution. The aim of this study was to positively contribute to the current knowledge about the metal(loid) pollution in Portugal. Forty-six hedgehogs (from rescue centres; with known provenance) were necropsied. Sex, age category and weight were determined. Spines, liver and kidney were collected, and metalloid concentrations were determined by inductively coupled plasma mass spectrophotometry (ICP-MS). In general, results did not present alarming metal(loid) concentrations, with the exception of cadmium (Cd) (in the kidneys) and copper (Cu). Hedgehogs from Viana do Castelo and Viseu showed elevated concentrations of arsenic (As) and Castelo Branco presented concerning values of cadmium (Cd). Adult and heavier hedgehogs tended to present higher levels of metal(loid)s. Sex does not seem to significantly affect the metal(loid)s' concentrations. Further analysis would be needed to prioritize areas with detail and allow the application of the necessary mitigation strategies.


Asunto(s)
Metaloides , Metales Pesados , Animales , Cadmio/análisis , Portugal , Erizos , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Metaloides/análisis , China , Medición de Riesgo
15.
Animals (Basel) ; 13(8)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37106922

RESUMEN

Heavy metal(loid) pollution of ecosystems is a current One Health problem. The liver is one of the most affected organs in cases of acute or chronic exposure to abnormal amounts of these substances, inducing histopathologic lesions. In order to assess the influence of heavy metal(loids), forty-five European hedgehogs (Erinaceus europaeus) were submitted to necropsy, and liver samples were collected for a routine histopathology exam and metal(loid)s determination (As, Cd, Co, Cr, Cu and Pb) by ICP-MS. Age was estimated during the necropsy exam. Biliary hyperplasia was the most frequent lesion observed (16/45; 35.56%). No statistically significant associations were found between biliary hyperplasia and age or sex. Metal(loid)s' concentrations were higher in animals with biliary hyperplasia (except for As). There was a statistically significant difference for both Cd and Co. For As, Cd and Co, cubs and juveniles animals showed significantly lower concentrations than elder individuals. Only for Pb were significant differences found between females and males. As described in the literature, exposure to metal(loid)s may be a cause of biliary hyperplasia, although further research (including the use of biochemical methods) is needed to support these results. To the authors' knowledge, this is the first report of this association in hedgehogs.

16.
Environ Monit Assess ; 184(1): 15-32, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21409365

RESUMEN

Urban and industrial development has caused a major impact on environmental soil quality. This work assesses the extent and severity of contamination in a small urban area subjected to an industrial impact and identifies the major anthropogenic inputs. Twenty-six soil samples were collected from agricultural and urban sites, and concentrations of potentially toxic elements (As, Cd, Cu, Cr, Fe, Mn, Ni, Pb and Zn), PAHs and PCBs, were determined. In spite of the low median concentrations observed, some sites represent a potential hazard for human health and ecosystems. Concentrations of contaminants were higher than those found in a nearby city, indicating that the study area is affected by the surrounding industry. The use of multivariate statistical analyses allowed for the identification of the main factors controlling the variability of potentially toxic elements and organic pollutants in the soils. The presence of Cr, Fe, Mn and Ni was associated with geogenic inputs, and Cu, Pb, Zn, As, PAHs and PCBs were associated with anthropogenic inputs. Industry and traffic were the most important anthropogenic sources. Soil characteristics were identified as important factors controlling the spatial variability of elements, both from recognised natural and anthropogenic origin. Differences between land uses were observed, which may be attributed to both management practices and proximity to sources.


Asunto(s)
Monitoreo del Ambiente/métodos , Industrias , Metales Pesados/química , Bifenilos Policlorados/química , Hidrocarburos Policíclicos Aromáticos/química , Contaminantes del Suelo/química , Ciudades , Metales Pesados/toxicidad , Bifenilos Policlorados/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Portugal , Suelo/química , Contaminantes del Suelo/toxicidad
17.
Biology (Basel) ; 11(8)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-36009780

RESUMEN

Polychaetes are known to be good bioindicators of marine pollution, such as inorganic contamination. Major and trace elements are commonly present in sediment and may be accumulated by polychaetes such as the tubiculous Diopatra neapolitana. In this study, D. neapolitana individuals were collected in the autumn, winter, spring, and summer of 2018/2019 from the Ria de Aveiro lagoon (western Portugal) to understand how seasonality influences element accumulation. The impact of the interaction of seasonality and elements on oxidative status, energy metabolism, and oxidative damage was also assessed. The obtained results showed that the activity of the antioxidant enzymes catalase, glutathione S-transferases, and non-protein thiol levels were higher in summer and that superoxide dismutase, lipid peroxidation, and electron transport system activity increased in winter. The lowest glycogen levels were observed during spring, and protein carbonylation was the highest during autumn. These results could mainly be related to high temperatures and the bioaccumulation of Al, As, Mn, and Zn. Energy-related parameters increased during spring and autumn, mainly due to the bioaccumulation of the same elements during spring and summer. Lipid damage was higher during winter, which was mainly due to salinity and temperature decreases. Overall, this study demonstrates that seasonality plays a role in element accumulation by polychaetes and that both impact the oxidative status of D. neapolitana.

18.
Artículo en Inglés | MEDLINE | ID: mdl-36078537

RESUMEN

Aljustrel, Lousal and S. Domingos mines are located in the Iberian Pyrite Belt (IPB), one of the greatest massive sulfide ore deposits worldwide. These mines' surrounding streams are affected by Acid Mine Drainage (AMD). The main purpose of this study was to understand AMD influence in the water quality and diatom behavior. Thus, waters and diatoms were sampled in 6 sites from the 3 selected mines on winter and summer of 2016. The highest concentrations were found in acidic sites: A3 (Aljustrel-Al, Cd, Cu, Fe and Zn (and lowest pH)) and L1 (Lousal-As, Mn, Ca, Mg, SO42- and conductivity). The most abundant diatom species was Pinnularia aljustrelica with 100% of dominance in A3 and S1 acidic sites, which puts in evidence this species adaptation to AMD harsh conditions. Multivariate cluster analysis allowed us to reinforce results from previous studies, where spatial differences were more relevant than seasonal ones. In 12 years (2004-2016), and with many transformations undertaken (re-opening and rehabilitation), there is a conservative behavior in the biological species (diatoms) and physicochemical concentrations (metals, pH and sulfates) from these three mining sites. This type of biogeochemical diagnosis is necessary for the sustainable use of these waters and the prevention of the polluting process, aimed to protect the water ecosystem and its biodiversity.


Asunto(s)
Diatomeas , Contaminantes Químicos del Agua , Ácidos/análisis , Ecosistema , Monitoreo del Ambiente/métodos , Agua Dulce , Hidrobiología , Portugal , Ríos , Contaminantes Químicos del Agua/análisis
19.
Artículo en Inglés | MEDLINE | ID: mdl-35010636

RESUMEN

Acid Mine Drainage (AMD) results from sulfide oxidation, which incorporates hydrogen ions, sulfate, and metals/metalloids into the aquatic environment, allowing fixation, bioaccumulation and biomagnification of pollutants in the aquatic food chain. Acidic leachates from waste rock dams from pyritic and (to a lesser extent) coal mining are the main foci of Acid Mine Drainage (AMD) production. When AMD is incorporated into rivers, notable changes in water hydro-geochemistry and biota are observed. There is a high interest in the biodiversity of this type of extreme environments for several reasons. Studies indicate that extreme acid environments may reflect early Earth conditions, and are thus, suitable for astrobiological experiments as acidophilic microorganisms survive on the sulfates and iron oxides in AMD-contaminated waters/sediments, an analogous environment to Mars; other reasons are related to the biotechnological potential of extremophiles. In addition, AMD is responsible for decreasing the diversity and abundance of different taxa, as well as for selecting the most well-adapted species to these toxic conditions. Acidophilic and acidotolerant eukaryotic microorganisms are mostly composed by algae (diatoms and unicellular and filamentous algae), protozoa, fungi and fungi-like protists, and unsegmented pseudocoelomata animals such as Rotifera and micro-macroinvertebrates. In this work, a literature review summarizing the most recent studies on eukaryotic organisms and micro-organisms in Acid Mine Drainage-affected environments is elaborated.


Asunto(s)
Minas de Carbón , Contaminantes Químicos del Agua , Ácidos , Eucariontes , Ríos , Sulfatos/análisis , Contaminantes Químicos del Agua/análisis
20.
Artículo en Inglés | MEDLINE | ID: mdl-34444203

RESUMEN

The Odiel River (SW Spain) is one of the most cited rivers in the scientific literature due to its high pollution degree, generated by more than 80 sulphide mines' (mostly unrestored) contamination in the Iberian Pyritic Belt (IPB), that have been exploited for more than 5000 years. Along the river and its tributaries, the physico-chemical parameters and diatoms, from 15 sampling points, were analyzed in the laboratory. Physico-chemical parameters, water chemical analysis, together with richness and Shannon-Wiener indexes were integrated in a matrix. An initial graphical treatment allowed the definition and proposal of a functioning system model, as well as the establishment of cause-effect relationships between pollution and its effects on biota. Then, the proposed model was statistically validated by factor analysis. For acidic pH waters, high values of Eh, TDS, sulphate, ∑REE and ∑Ficklin were found, while diatomologic indicators took low values. Thus, factor analysis was a very effective tool for graphical treatment validation as well as for pollution-biota interaction models' formulation, governed by two factors: AMD processes and water balance suffered by the studied river. As a novelty, the cause-effect relationships between high barium concentration and low diversity and richness were demonstrated in the IPB, for the first time.


Asunto(s)
Diatomeas , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Modelos Estadísticos , Ríos , España , Agua , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA