Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(24): e2321991121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38838012

RESUMEN

The endoplasmic reticulum (ER) undergoes degradation by selective macroautophagy (ER-phagy) in response to starvation or the accumulation of misfolded proteins within its lumen. In yeast, actin assembly at sites of contact between the cortical ER (cER) and endocytic pits acts to displace elements of the ER from their association with the plasma membrane (PM) so they can interact with the autophagosome assembly machinery near the vacuole. A collection of proteins tether the cER to the PM. Of these, Scs2/22 and Ist2 are required for cER-phagy, most likely through their roles in lipid transport, while deletion of the tricalbins, TCB1/2/3, bypasses those requirements. An artificial ER-PM tether blocks cER-phagy in both the wild type (WT) and a strain lacking endogenous tethers, supporting the importance of cER displacement from the PM. Scs2 and Ist2 can be cross-linked to the selective cER-phagy receptor, Atg40. The COPII cargo adaptor subunit, Lst1, associates with Atg40 and is required for cER-phagy. This requirement is also bypassed by deletion of the ER-PM tethers, suggesting a role for Lst1 prior to the displacement of the cER from the PM during cER-phagy. Although pexophagy and mitophagy also require actin assembly, deletion of ER-PM tethers does not bypass those requirements. We propose that within the context of rapamycin-induced cER-phagy, Scs2/22, Ist2, and Lst1 promote the local displacement of an element of the cER from the cortex, while Tcb1/2/3 act in opposition, anchoring the cER to the plasma membrane.


Asunto(s)
Autofagia , Membrana Celular , Retículo Endoplásmico , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Retículo Endoplásmico/metabolismo , Autofagia/fisiología , Membrana Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética
2.
Trends Biochem Sci ; 46(8): 630-639, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33509650

RESUMEN

Lysosomal degradation of endoplasmic reticulum (ER) fragments by autophagy, termed ER-phagy or reticulophagy, occurs under normal as well as stress conditions. The recent discovery of multiple ER-phagy receptors has stimulated studies on the roles of ER-phagy. We discuss how the ER-phagy receptors and the cellular components that work with these receptors mediate two important functions: ER homeostasis and ER quality control. We highlight that ER-phagy plays an important role in alleviating ER expansion induced by ER stress, and acts as an alternative disposal pathway for misfolded proteins. We suggest that the latter function explains the emerging connection between ER-phagy and disease. Additional ER-phagy-associated functions and important unanswered questions are also discussed.


Asunto(s)
Retículo Endoplásmico , Proteínas de la Membrana , Autofagia , Estrés del Retículo Endoplásmico , Homeostasis
3.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35101986

RESUMEN

Fragments of the endoplasmic reticulum (ER) are selectively delivered to the lysosome (mammals) or vacuole (yeast) in response to starvation or the accumulation of misfolded proteins through an autophagic process known as ER-phagy. A screen of the Saccharomyces cerevisiae deletion library identified end3Δ as a candidate knockout strain that is defective in ER-phagy during starvation conditions, but not bulk autophagy. We find that loss of End3 and its stable binding partner Pan1, or inhibition of the Arp2/3 complex that is coupled by the End3-Pan1 complex to endocytic pits, blocks the association of the cortical ER autophagy receptor, Atg40, with the autophagosomal assembly scaffold protein Atg11. The membrane contact site module linking the rim of cortical ER sheets and endocytic pits, consisting of Scs2 or Scs22, Osh2 or Osh3, and Myo3 or Myo5, is also needed for ER-phagy. Both Atg40 and Scs2 are concentrated at the edges of ER sheets and can be cross-linked to each other. Our results are consistent with a model in which actin assembly at sites of contact between the cortical ER and endocytic pits contributes to ER sequestration into autophagosomes.


Asunto(s)
Actinas/metabolismo , Autofagosomas/metabolismo , Autofagia , Retículo Endoplásmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Actinas/genética , Autofagosomas/genética , Retículo Endoplásmico/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
Cell ; 133(7): 1202-13, 2008 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-18585354

RESUMEN

The multimeric membrane-tethering complexes TRAPPI and TRAPPII share seven subunits, of which four (Bet3p, Bet5p, Trs23p, and Trs31p) are minimally needed to activate the Rab GTPase Ypt1p in an event preceding membrane fusion. Here, we present the structure of a heteropentameric TRAPPI assembly complexed with Ypt1p. We propose that TRAPPI facilitates nucleotide exchange primarily by stabilizing the nucleotide-binding pocket of Ypt1p in an open, solvent-accessible form. Bet3p, Bet5p, and Trs23p interact directly with Ypt1p to stabilize this form, while the C terminus of Bet3p invades the pocket to participate in its remodeling. The Trs31p subunit does not interact directly with the GTPase but allosterically regulates the TRAPPI interface with Ypt1p. Our findings imply that TRAPPII activates Ypt1p by an identical mechanism. This view of a multimeric membrane-tethering assembly complexed with a Rab provides a framework for understanding events preceding membrane fusion at the molecular level.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Retículo Endoplásmico/metabolismo , Activación Enzimática , Aparato de Golgi/metabolismo , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Modelos Moleculares , Mapeo de Interacción de Proteínas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Proteínas de Unión al GTP rab/química
5.
Proc Natl Acad Sci U S A ; 117(31): 18530-18539, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32690699

RESUMEN

Endoplasmic reticulum (ER) macroautophagy (hereafter called ER-phagy) uses autophagy receptors to selectively degrade ER domains in response to starvation or the accumulation of aggregation-prone proteins. Autophagy receptors package the ER into autophagosomes by binding to the ubiquitin-like yeast protein Atg8 (LC3 in mammals), which is needed for autophagosome formation. In budding yeast, cortical and cytoplasmic ER-phagy requires the autophagy receptor Atg40. While different ER autophagy receptors have been identified, little is known about other components of the ER-phagy machinery. In an effort to identify these components, we screened the genome-wide library of viable yeast deletion mutants for defects in the degradation of cortical ER following treatment with rapamycin, a drug that mimics starvation. Among the mutants we identified was vps13Δ. While yeast has one gene that encodes the phospholipid transporter VPS13, humans have four vacuolar protein-sorting (VPS) protein 13 isoforms. Mutations in all four human isoforms have been linked to different neurological disorders, including Parkinson's disease. Our findings have shown that Vps13 acts after Atg40 engages the autophagy machinery. Vps13 resides at contact sites between the ER and several organelles, including late endosomes. In the absence of Vps13, the cortical ER marker Rtn1 accumulated at late endosomes, and a dramatic decrease in ER packaging into autophagosomes was observed. Together, these studies suggest a role for Vps13 in the sequestration of the ER into autophagosomes at late endosomes. These observations may have important implications for understanding Parkinson's and other neurological diseases.


Asunto(s)
Autofagosomas/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Autofagia , Línea Celular , Retículo Endoplásmico/genética , Endosomas/genética , Endosomas/metabolismo , Humanos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
6.
Nat Rev Mol Cell Biol ; 11(11): 759-63, 2010 11.
Artículo en Inglés | MEDLINE | ID: mdl-20966969

RESUMEN

Transport protein particle (TRAPP; also known as trafficking protein particle), a multimeric guanine nucleotide-exchange factor for the yeast GTPase Ypt1 and its mammalian homologue, RAB1, regulates multiple membrane trafficking pathways. TRAPP complexes exist in three forms, each of which activates Ypt1 or RAB1 through a common core of subunits and regulates complex localization through distinct subunits. Whereas TRAPPI and TRAPPII tether coated vesicles during endoplasmic reticulum to Golgi and intra-Golgi traffic, respectively, TRAPPIII has recently been shown to be required for autophagy. These advances illustrate how the TRAPP complexes link Ypt1 and RAB1 activation to distinct membrane-tethering events.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab1/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Péptidos y Proteínas de Señalización Intercelular , Modelos Biológicos , Mutación , Proteínas de Transporte Vesicular/genética
7.
Proc Natl Acad Sci U S A ; 115(27): E6237-E6244, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29915089

RESUMEN

The endoplasmic reticulum (ER) forms a contiguous network of tubules and sheets that is predominantly associated with the cell cortex in yeast. Upon treatment with rapamycin, the ER undergoes degradation by selective autophagy. This process, termed ER-phagy, requires Atg40, a selective autophagy receptor that localizes to the cortical ER. Here we report that ER-phagy also requires Lnp1, an ER membrane protein that normally resides at the three-way junctions of the ER network, where it serves to stabilize the network as it is continually remodeled. Rapamycin treatment increases the expression of Atg40, driving ER domains marked by Atg40 puncta to associate with Atg11, a scaffold protein needed to form autophagosomes. Although Atg40 largely localizes to the cortical ER, the autophagy machinery resides in the cell interior. The localization of Atg40 to sites of autophagosome formation is blocked in an lnp1Δ mutant or upon treatment of wild-type cells with the actin-depolymerizing drug Latrunculin A. This prevents the association of Atg40 with Atg11 and the packaging of the ER into autophagosomes. We propose that Lnp1 is needed to stabilize the actin-dependent remodeling of the ER that is essential for ER-phagy.


Asunto(s)
Autofagosomas/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Retículo Endoplásmico/genética , Proteínas de la Membrana/genética , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Tiazolidinas/farmacología , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
8.
Proc Natl Acad Sci U S A ; 114(41): E8637-E8645, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-28973856

RESUMEN

Ypt1 and Sec4 are essential Rab GTPases that control the early and late stages of the yeast secretory pathway, respectively. A chimera consisting of Ypt1 with the switch I domain of Sec4, Ypt1-SW1Sec4, is efficiently activated in vitro by the Sec4 exchange factor, Sec2. This should lead to its ectopic activation in vivo and thereby disrupt membrane traffic. Nonetheless early studies found that yeast expressing Ypt1-SW1Sec4 as the sole copy of YPT1 exhibit no growth defect. To resolve this conundrum, we have analyzed yeast expressing various levels of Ypt1-SW1Sec4 We show that even normal expression of Ypt1-SW1Sec4 leads to kinetic transport defects at a late stage of the pathway, with secretory vesicles accumulating near exocytic sites. Higher levels are toxic. Toxicity is suppressed by truncation of Uso1, a vesicle tether required for endoplasmic reticulum-Golgi traffic. The globular head of Uso1 binds to Ypt1 and its coiled-coil tail binds to the Golgi-associated SNARE, Sed5. We propose that when Uso1 is inappropriately recruited to secretory vesicles by Ypt1-SW1Sec4, the extended coiled-coil tail blocks docking to the plasma membrane. This putative inhibitory function could serve to increase the fidelity of vesicle docking.


Asunto(s)
Membrana Celular/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Unión Proteica , Saccharomyces cerevisiae/crecimiento & desarrollo
9.
Proc Natl Acad Sci U S A ; 112(2): 418-23, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25548161

RESUMEN

The endoplasmic reticulum (ER) consists of a polygonal network of sheets and tubules interconnected by three-way junctions. This network undergoes continual remodeling through competing processes: the branching and fusion of tubules forms new three-way junctions and new polygons, and junction sliding and ring closure leads to polygon loss. However, little is known about the machinery required to generate and maintain junctions. We previously reported that yeast Lnp1 localizes to ER junctions, and that loss of Lnp1 leads to a collapsed, densely reticulated ER network. In mammalian cells, only approximately half the junctions contain Lnp1. Here we use live cell imaging to show that mammalian Lnp1 (mLnp1) affects ER junction mobility and hence network dynamics. Three-way junctions with mLnp1 are less mobile than junctions without mLnp1. Newly formed junctions that acquire mLnp1 remain stable within the ER network, whereas nascent junctions that fail to acquire mLnp1 undergo rapid ring closure. These findings imply that mLnp1 plays a key role in stabilizing nascent three-way ER junctions.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de Homeodominio/metabolismo , Animales , Células COS , Chlorocebus aethiops , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Proteínas de Homeodominio/antagonistas & inhibidores , Proteínas de Homeodominio/genética , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteolípidos/metabolismo , ARN Interferente Pequeño/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análisis de la Célula Individual
10.
Nature ; 473(7346): 181-6, 2011 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-21532587

RESUMEN

How the directionality of vesicle traffic is achieved remains an important unanswered question in cell biology. The Sec23p/Sec24p coat complex sorts the fusion machinery (SNAREs) into vesicles as they bud from the endoplasmic reticulum (ER). Vesicle tethering to the Golgi begins when the tethering factor TRAPPI binds to Sec23p. Where the coat is released and how this event relates to membrane fusion is unknown. Here we use a yeast transport assay to demonstrate that an ER-derived vesicle retains its coat until it reaches the Golgi. A Golgi-associated kinase, Hrr25p (CK1δ orthologue), then phosphorylates the Sec23p/Sec24p complex. Coat phosphorylation and dephosphorylation are needed for vesicle fusion and budding, respectively. Additionally, we show that Sec23p interacts in a sequential manner with different binding partners, including TRAPPI and Hrr25p, to ensure the directionality of ER-Golgi traffic and prevent the back-fusion of a COPII vesicle with the ER. These events are conserved in mammalian cells.


Asunto(s)
Quinasa de la Caseína I/metabolismo , Aparato de Golgi/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Ratas , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo
11.
Proc Natl Acad Sci U S A ; 110(24): 9800-5, 2013 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-23716696

RESUMEN

When macroautophagy, a catabolic process that rids the cells of unwanted proteins, is initiated, 30-60 nm Atg9 vesicles move from the Golgi to the preautophagosomal structure (PAS) to initiate autophagosome formation. The Rab GTPase Ypt1 and its mammalian homolog Rab1 regulate macroautophagy and two other trafficking events: endoplasmic reticulum-Golgi and intra-Golgi traffic. How a Rab, which localizes to three distinct cellular locations, achieves specificity is unknown. Here we show that transport protein particle III (TRAPPIII), a conserved autophagy-specific guanine nucleotide exchange factor for Ypt1/Rab1, is recruited to the PAS by Atg17. We also show that activated Ypt1 recruits the putative membrane curvature sensor Atg1 to the PAS, bringing it into proximity to its binding partner Atg17. Since Atg17 resides at the PAS, these events ensure that Atg1 will specifically localize to the PAS and not to the other compartments where Ypt1 resides. We propose that Ypt1 regulates Atg9 vesicle tethering by modulating the delivery of Atg1 to the PAS. These events appear to be conserved in higher cells.


Asunto(s)
Fagosomas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Autofagia , Homólogo de la Proteína 1 Relacionada con la Autofagia , Proteínas Relacionadas con la Autofagia , Células COS , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Chlorocebus aethiops , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HeLa , Humanos , Immunoblotting , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Microscopía Fluorescente , Células 3T3 NIH , Unión Proteica , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab1/genética , Proteínas de Unión al GTP rab1/metabolismo
12.
Proc Natl Acad Sci U S A ; 110(48): 19432-7, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24218626

RESUMEN

The transport protein particle (TRAPP) III complex, comprising the TRAPPI complex and additional subunit Trs85, is an autophagy-specific guanine nucleotide exchange factor for the Rab GTPase Ypt1 that is recruited to the phagophore assembly site when macroautophagy is induced. We present the single-particle electron microscopy structure of TRAPPIII, which reveals that the dome-shaped Trs85 subunit associates primarily with the Trs20 subunit of TRAPPI. We further demonstrate that TRAPPIII binds the coat protein complex (COP) II coat subunit Sec23. The COPII coat facilitates the budding and targeting of ER-derived vesicles with their acceptor compartment. We provide evidence that COPII-coated vesicles and the ER-Golgi fusion machinery are needed for macroautophagy. Our results imply that TRAPPIII binds to COPII vesicles at the phagophore assembly site and that COPII vesicles may provide one of the membrane sources used in autophagosome formation. These events are conserved in yeast to mammals.


Asunto(s)
Autofagia/fisiología , Vesículas Cubiertas por Proteínas de Revestimiento/fisiología , Modelos Moleculares , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Transporte Vesicular/química , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Células COS , Chlorocebus aethiops , Cromatografía en Gel , Clonación Molecular , Electroporación , Escherichia coli , Procesamiento de Imagen Asistido por Computador , Microscopía Electrónica , Microscopía Fluorescente , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo
13.
Biochem Soc Trans ; 43(1): 92-6, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25619251

RESUMEN

The GTPase Ypt1, Rab1 in mammals functions on multiple intracellular trafficking pathways. Ypt1 has an established role on the early secretory pathway in targeting coat protein complex II (COPII) coated vesicles to the cis-Golgi. Additionally, Ypt1 functions during the initial stages of macroautophagy, a process of cellular degradation induced during periods of cell stress. In the present study, we discuss the role of Ypt1 and other secretory machinery during macroautophagy, highlighting commonalities between these two pathways.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Proteínas de Unión al GTP rab/fisiología , Animales , Autofagia , Aparato de Golgi/metabolismo , Humanos , Fagosomas , Transporte de Proteínas , Vías Secretoras , Proteínas de Transporte Vesicular/fisiología
15.
Autophagy ; : 1-9, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38818751

RESUMEN

Reticulophagy is mediated by autophagy receptors that function in one of the two domains of the ER, tubules or flat sheets. Three different conserved mammalian receptors mediate autophagy in ER tubules: RTN3L, ATL3 and CALCOCO1. Previous studies have shown that RTN3L maintains proteostasis by targeting mutant aggregation-prone proteins for autophagy at distinct foci in ER tubules that we named ERPHS (ER-reticulophagy sites). The role for ATL3 and CALCOCO1 in proteostasis has not been addressed. Here we analyzed three different misfolded disease-causing RTN3L substrates and show that ATL3 and CALCOCO1 target the same cargoes for autophagy. Colocalization and knock down studies revealed that RTN3L and ATL3 are both required for the formation of RTN3L-containing ERPHS, while CALCOCO1 is not. We propose that RTN3L, ATL3 and CALCOCO1 work in parallel to maintain proteostasis within the ER network by targeting cargoes at different sites in the tubules.Abbreviation ATL3: atlastin GTPase 3; Baf: bafilomycin A1; CALCOCO1: calcium binding and coiled-coil domain 1; Epr1: ER-phagy receptor 1; ER: endoplasmic reticulum; ERAD: ER-associated protein degradation; ERPHS: ER-reticulophagy sites; LAMP1: lysosomal associated membrane protein 1; PGRMC1: progesterone receptor membrane component 1; POMC: proopiomelanocortin; Pro-AVP: pro-arginine vasopressin; RETREG1: reticulophagy regulator 1; reticulophagy: endoplasmic reticulum selective autophagy; RTN3L: reticulon 3 long isoform; VAPA: VAMP associated protein A.

16.
Nature ; 445(7130): 941-4, 2007 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-17287728

RESUMEN

The budding of endoplasmic reticulum (ER)-derived vesicles is dependent on the COPII coat complex. Coat assembly is initiated when Sar1-GTP recruits the cargo adaptor complex, Sec23/Sec24, by binding to its GTPase-activating protein (GAP) Sec23 (ref. 2). This leads to the capture of transmembrane cargo by Sec24 (refs 3, 4) before the coat is polymerized by the Sec13/Sec31 complex. The initial interaction of a vesicle with its target membrane is mediated by tethers. We report here that in yeast and mammalian cells the tethering complex TRAPPI (ref. 7) binds to the coat subunit Sec23. This event requires the Bet3 subunit. In vitro studies demonstrate that the interaction between Sec23 and Bet3 targets TRAPPI to COPII vesicles to mediate vesicle tethering. We propose that the binding of TRAPPI to Sec23 marks a coated vesicle for fusion with another COPII vesicle or the Golgi apparatus. An implication of these findings is that the intracellular destination of a transport vesicle may be determined in part by its coat and its associated cargo.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Proteínas Activadoras de GTPasa , Aparato de Golgi/metabolismo , Fusión de Membrana , Proteínas de la Membrana/metabolismo , Unión Proteica , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo
17.
Proc Natl Acad Sci U S A ; 107(17): 7811-6, 2010 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-20375281

RESUMEN

Macroautophagy (hereafter autophagy) is a ubiquitous process in eukaryotic cells that is integrally involved in various aspects of cellular and organismal physiology. The morphological hallmark of autophagy is the formation of double-membrane cytosolic vesicles, autophagosomes, which sequester cytoplasmic cargo and deliver it to the lysosome or vacuole. Thus, autophagy involves dynamic membrane mobilization, yet the source of the lipid that forms the autophagosomes and the mechanism of membrane delivery are poorly characterized. The TRAPP complexes are multimeric guanine nucleotide exchange factors (GEFs) that activate the Rab GTPase Ypt1, which is required for secretion. Here we describe another form of this complex (TRAPPIII) that acts as an autophagy-specific GEF for Ypt1. The Trs85 subunit of the TRAPPIII complex directs this Ypt1 GEF to the phagophore assembly site (PAS) that is involved in autophagosome formation. Consistent with the observation that a Ypt1 GEF is directed to the PAS, we find that Ypt1 is essential for autophagy. This is an example of a Rab GEF that is specifically targeted for canonical autophagosome formation.


Asunto(s)
Autofagia/fisiología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Cromatografía en Gel , Cartilla de ADN/genética , Immunoblotting , Inmunoprecipitación , Microscopía Fluorescente , Fagosomas/metabolismo
18.
Autophagy ; 19(1): 358-359, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35532158

RESUMEN

A recent screen of the Saccharomyces cerevisiae deletion library implicated End3 in autophagy of the endoplasmic reticulum (ER). Together with Pan1, End3 coordinates endocytic site initiation with the localized assembly of branching actin filaments that promotes invagination of endocytic pits. Oxysterol binding proteins function as an inter-organelle bridge by interacting with VAP proteins on the cortical ER and type I myosins on the endocytic pit. These proteins not only promote localized actin assembly at contact sites, they are required for ER autophagy as well. We propose that localized actin polymerization can push the edge of an ER sheet from the cell cortex toward the site of autophagosome assembly near the vacuole.


Asunto(s)
Actinas , Proteínas de Saccharomyces cerevisiae , Actinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Autofagia , Saccharomyces cerevisiae/metabolismo , Retículo Endoplásmico/metabolismo
19.
Traffic ; 11(4): 520-32, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20059749

RESUMEN

GTPases of the Rab family cycle between an inactive (GDP-bound) and active (GTP-bound) conformation. The active form of the Rab regulates a variety of cellular functions via multiple effectors. Guanine nucleotide exchange factors (GEFs) activate Rabs by accelerating the exchange of GDP for GTP, while GTPase activating proteins (GAPs) inactivate Rabs by stimulating the hydrolysis of GTP. The GTPase Ypt1p is required for endoplasmic reticulum (ER)-Golgi and intra-Golgi traffic in the yeast Saccharomyces cerevisiae. Recent findings, however, have shown that Ypt1p GEF, GAP and an effector are all required for traffic from the early endosome to the Golgi. Here we describe a screen for ypt1 mutants that block traffic from the early endosome to the late Golgi, but not general secretion. This screen has led to the identification of a collection of recessive and dominant mutants that block traffic from the early endosome. While it has long been known that Ypt1p regulates the flow of biosynthetic traffic into the cis side of the Golgi, these findings have established a role for Ypt1p in the regulation of early endosome-Golgi traffic. We propose that Ypt1p regulates the flow of traffic into the cis and trans side of the Golgi via multiple effectors.


Asunto(s)
Aparato de Golgi/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Unión al GTP rab/metabolismo , Endosomas/enzimología , Genes Dominantes , Genes Recesivos , Factores de Intercambio de Guanina Nucleótido/metabolismo , Mutación , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Unión al GTP rab/genética
20.
Dev Cell ; 12(5): 671-82, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17488620

RESUMEN

Tethering factors have been shown to interact with Rabs and SNAREs and, more recently, with coat proteins. Coat proteins are required for cargo selection and membrane deformation to bud a transport vesicle from a donor compartment. It was once thought that a vesicle must uncoat before it recognizes its target membrane. However, recent findings have revealed a role for the coat in directing a vesicle to its correct intracellular destination. In this review we will discuss the literature that links coat proteins to vesicle targeting events.


Asunto(s)
Proteína Coatómero/metabolismo , Proteínas SNARE/metabolismo , Vesículas Transportadoras/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Transporte Biológico , Humanos , Subunidades de Proteína/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA