Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Evol Biol ; 37(7): 795-806, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38699979

RESUMEN

Arms race dynamics are a common outcome of host-parasite coevolution. While they can theoretically be maintained indefinitely, realistic arms races are expected to be finite. Once an arms race has ended, for example due to the evolution of a generalist-resistant host, the system may transition into coevolutionary dynamics that favour long-term diversity. In microbial experiments, host-parasite arms races often transition into a stable coexistence of generalist-resistant hosts, (semi-)susceptible hosts, and parasites. While long-term host diversity is implicit in these cases, parasite diversity is usually overlooked. In this study, we examined parasite diversity after the end of an experimental arms race between a unicellular alga (Chlorella variabilis) and its lytic virus (PBCV-1). First, we isolated virus genotypes from multiple time points from two replicate microcosms. A time-shift experiment confirmed that the virus isolates had escalating host ranges, i.e., that arms races had occurred. We then examined the phenotypic and genetic diversity of virus isolates from the post-arms race phase. Post-arms race virus isolates had diverse host ranges, survival probabilities, and growth rates; they also clustered into distinct genetic groups. Importantly, host range diversity was maintained throughout the post-arms race phase, and the frequency of host range phenotypes fluctuated over time. We hypothesize that this dynamic polymorphism was maintained by a combination of fluctuating selection and demographic stochasticity. Together with previous work in prokaryotic systems, our results link experimental observations of arms races to natural observations of long-term host and parasite diversity.


Asunto(s)
Chlorella , Chlorella/virología , Chlorella/genética , Variación Genética , Coevolución Biológica , Evolución Biológica
2.
Mol Ecol ; 32(4): 841-853, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36458574

RESUMEN

Anthropogenic disturbances of ecosystems are causing a loss of biodiversity at an unprecedented rate. Species extinctions often leave ecological niches underutilized, and their colonization by other species may require new adaptation. In Lake Constance, on the borders of Germany, Austria and Switzerland, an endemic profundal whitefish species went extinct during a period of anthropogenic eutrophication. In the process of extinction, the deep-water species hybridized with three surviving whitefish species of Lake Constance, resulting in introgression of genetic variation that is potentially adaptive in deep-water habitats. Here, we sampled a water depth gradient across a known spawning ground of one of these surviving species, Coregonus macrophthalmus, and caught spawning individuals at greater depths (down to 90 m) than historically recorded. We sequenced a total of 96 whole genomes, 11-17 for each of six different spawning depth populations (4, 12, 20, 40, 60 and 90 m), to document genomic intraspecific differentiation along a water depth gradient. We identified 52 genomic regions that are potentially under divergent selection between the deepest (90 m) and all shallower (4-60 m) spawning habitats. At 12 (23.1%) of these 52 loci, the allele frequency pattern across historical and contemporary populations suggests that introgression from the extinct species potentially facilitates ongoing adaptation to deep water. Our results are consistent with the syngameon hypothesis, proposing that hybridization between members of an adaptive radiation can promote further niche expansion and diversification. Furthermore, our findings demonstrate that introgression from extinct into extant species can be a source of evolvability, enabling rapid adaptation to environmental change, and may contribute to the ecological recovery of ecosystem functions after extinctions.


Asunto(s)
Adaptación Biológica , Ecosistema , Introgresión Genética , Lagos , Salmonidae , Animales , Humanos , Biodiversidad , Salmonidae/genética , Salmonidae/fisiología , Introgresión Genética/genética , Adaptación Biológica/genética , Europa (Continente) , Extinción Biológica , Evolución Biológica , Genoma/genética , Genoma/fisiología
3.
Mol Ecol ; 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36997280

RESUMEN

Host-parasite interactions can cause strong demographic fluctuations accompanied by selective sweeps of resistance/infectivity alleles. Both demographic bottlenecks and frequent sweeps are expected to reduce the amount of segregating genetic variation and therefore might constrain adaptation during co-evolution. Recent studies, however, suggest that the interaction of demographic and selective processes is a key component of co-evolutionary dynamics and may rather positively affect levels of genetic diversity available for adaptation. Here, we provide direct experimental testing of this hypothesis by disentangling the effects of demography, selection and their interaction in an experimental host-parasite system. We grew 12 populations of a unicellular, asexually reproducing algae (Chlorella variabilis) that experienced either growth followed by constant population sizes (three populations), demographic fluctuations (three populations), selection induced by exposure to a virus (three populations), or demographic fluctuations together with virus-induced selection (three populations). After 50 days (~50 generations), we conducted whole-genome sequencing of each algal host population. We observed more genetic diversity in populations that jointly experienced selection and demographic fluctuations than in populations where these processes were experimentally separated. In addition, in those three populations that jointly experienced selection and demographic fluctuations, experimentally measured diversity exceeds expected values of diversity that account for the cultures' population sizes. Our results suggest that eco-evolutionary feedbacks can positively affect genetic diversity and provide the necessary empirical measures to guide further improvements of theoretical models of adaptation during host-parasite co-evolution.

4.
Mol Ecol ; 28(3): 615-629, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30554444

RESUMEN

The erosion of habitat heterogeneity can reduce species diversity directly but can also lead to the loss of distinctiveness of sympatric species through speciation reversal. We know little about changes in genomic differentiation during the early stages of these processes, which can be mediated by anthropogenic perturbation. Here, we analyse three sympatric whitefish species (Coregonus spp) sampled across two neighbouring and connected Swiss pre-alpine lakes, which have been differentially affected by anthropogenic eutrophication. Our data set comprises 16,173 loci genotyped across 138 whitefish using restriction-site associated DNA sequencing (RADseq). Our analysis suggests that in each of the two lakes, the population of a different, but ecologically similar, whitefish species declined following a recent period of eutrophication. Genomic signatures consistent with hybridization are more pronounced in the more severely impacted lake. Comparisons between sympatric pairs of whitefish species with contrasting ecology, where one is shallow benthic and the other one more profundal pelagic, reveal genomic differentiation that is largely correlated along the genome, while differentiation is uncorrelated between pairs of allopatric provenance with similar ecology. We identify four genomic loci that provide evidence of parallel divergent adaptation between the shallow benthic species and the two different more profundal species. Functional annotations available for two of those loci are consistent with divergent ecological adaptation. Our genomic analysis indicates the action of divergent natural selection between sympatric whitefish species in pre-alpine lakes and reveals the vulnerability of these species to anthropogenic alterations of the environment and associated adaptive landscape.


Asunto(s)
Genética de Población , Salmonidae/genética , Selección Genética , Simpatría , Animales , Ecosistema , Eutrofización , Genotipo , Hibridación Genética , Lagos , Suiza
5.
Genome ; 61(4): 298-309, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29241022

RESUMEN

Evolution is a fundamental ecosystem process. The study of genomic variation of organisms can not only improve our understanding of evolutionary processes, but also of contemporary and future ecosystem dynamics. We argue that integrative research between the fields of genomics and ecosystem ecology could generate new insights. Specifically, studies of biodiversity and ecosystem functioning, evolutionary rescue, and eco-evolutionary dynamics could all benefit from information about variation in genome structure and the genetic architecture of traits, whereas genomic studies could benefit from information about the ecological context of evolutionary dynamics. We propose new ways to help link research on functional genomic diversity with (reciprocal) interactions between phenotypic evolution and ecosystem change. Despite numerous challenges, we anticipate that the wealth of genomic data being collected on natural populations will improve our understanding of ecosystems.


Asunto(s)
Evolución Biológica , Ecosistema , Genoma/genética , Genómica/métodos , Animales , Ambiente , Genética de Población , Modelos Biológicos , Fenotipo , Dinámica Poblacional , Sitios de Carácter Cuantitativo/genética
6.
PLoS Genet ; 11(2): e1004966, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25679225

RESUMEN

The patterns of genomic divergence during ecological speciation are shaped by a combination of evolutionary forces. Processes such as genetic drift, local reduction of gene flow around genes causing reproductive isolation, hitchhiking around selected variants, variation in recombination and mutation rates are all factors that can contribute to the heterogeneity of genomic divergence. On the basis of 60 fully sequenced three-spined stickleback genomes, we explore these different mechanisms explaining the heterogeneity of genomic divergence across five parapatric lake and river population pairs varying in their degree of genetic differentiation. We find that divergent regions of the genome are mostly specific for each population pair, while their size and abundance are not correlated with the extent of genome-wide population differentiation. In each pair-wise comparison, an analysis of allele frequency spectra reveals that 25-55% of the divergent regions are consistent with a local restriction of gene flow. Another large proportion of divergent regions (38-75%) appears to be mainly shaped by hitchhiking effects around positively selected variants. We provide empirical evidence that alternative mechanisms determining the evolution of genomic patterns of divergence are not mutually exclusive, but rather act in concert to shape the genome during population differentiation, a first necessary step towards ecological speciation.


Asunto(s)
Evolución Molecular , Especiación Genética , Genética de Población , Smegmamorpha/genética , Animales , Ecología , Flujo Génico , Frecuencia de los Genes , Variación Genética , Genómica , Lagos , Aislamiento Reproductivo , Selección Genética
7.
PLoS Genet ; 10(12): e1004830, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25474574

RESUMEN

Duplicate genes emerge as copy-number variations (CNVs) at the population level, and remain copy-number polymorphic until they are fixed or lost. The successful establishment of such structural polymorphisms in the genome plays an important role in evolution by promoting genetic diversity, complexity and innovation. To characterize the early evolutionary stages of duplicate genes and their potential adaptive benefits, we combine comparative genomics with population genomics analyses to evaluate the distribution and impact of CNVs across natural populations of an eco-genomic model, the three-spined stickleback. With whole genome sequences of 66 individuals from populations inhabiting three distinct habitats, we find that CNVs generally occur at low frequencies and are often only found in one of the 11 populations surveyed. A subset of CNVs, however, displays copy-number differentiation between populations, showing elevated within-population frequencies consistent with local adaptation. By comparing teleost genomes to identify lineage-specific genes and duplications in sticklebacks, we highlight rampant gene content differences among individuals in which over 30% of young duplicate genes are CNVs. These CNV genes are evolving rapidly at the molecular level and are enriched with functional categories associated with environmental interactions, depicting the dynamic early copy-number polymorphic stage of genes during population differentiation.


Asunto(s)
Variaciones en el Número de Copia de ADN , Genes Duplicados/genética , Variación Genética , Smegmamorpha/genética , Adaptación Biológica/genética , Animales , Evolución Molecular , Femenino , Eliminación de Gen , Dosificación de Gen , Duplicación de Gen , Masculino , Metagenómica , Filogenia
8.
Mol Ecol ; 25(4): 943-58, 2016 02.
Artículo en Inglés | MEDLINE | ID: mdl-26749022

RESUMEN

The observation of habitat-specific phenotypes suggests the action of natural selection. The three-spined stickleback (Gasterosteus aculeatus) has repeatedly colonized and adapted to diverse freshwater habitats across the northern hemisphere since the last glaciation, while giving rise to recurring phenotypes associated with specific habitats. Parapatric lake and river populations of sticklebacks harbour distinct parasite communities, a factor proposed to contribute to adaptive differentiation between these ecotypes. However, little is known about the transcriptional response to the distinct parasite pressure of those fish in a natural setting. Here, we sampled wild-caught sticklebacks across four geographical locations from lake and river habitats differing in their parasite load. We compared gene expression profiles between lake and river populations using 77 whole-transcriptome libraries from two immune-relevant tissues, the head kidney and the spleen. Differential expression analyses revealed 139 genes with habitat-specific expression patterns across the sampled population pairs. Among the 139 differentially expressed genes, eight are annotated with an immune function and 42 have been identified as differentially expressed in previous experimental studies in which fish have been immune challenged. Together, these findings reinforce the hypothesis that parasites contribute to adaptation of sticklebacks in lake and river habitats.


Asunto(s)
Ecosistema , Ecotipo , Smegmamorpha/genética , Transcriptoma , Adaptación Fisiológica/genética , Animales , Canadá , Perfilación de la Expresión Génica , Genética de Población , Alemania , Lagos , Noruega , Ríos , Análisis de Secuencia de ARN , Smegmamorpha/inmunología , Smegmamorpha/parasitología
9.
Mol Phylogenet Evol ; 101: 8-18, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27143239

RESUMEN

African weakly-electric fishes (Mormyridae) are able to communicate through species-specific electric signals; this feature might have favoured the evolutionary radiation observed in this family (over 200 species) by acting as an effective pre-zygotic isolation mechanism. In the present study we used mitochondrial (cytb) and nuclear (rps7, scn4aa) markers in order to reconstruct a species-phylogeny and identify species boundaries for the genus Campylomormyrus, by applying inference methods based on the multispecies coalescent model. Additionally, we employed 16 microsatellite markers, landmark-based morphometric measurements, and electro-physiological analyses as independent lines of evidence to the results obtained from the sequence data. The results show that groups that are morphologically different are also significantly divergent at the genetic level, whereas morphologically similar groups, displaying dissimilar electric signals, do not show enough genetic diversity to be considered separate species. Furthermore, the data confirm the presence of a yet undescribed species within the genus Campylomormyrus.


Asunto(s)
Pez Eléctrico/clasificación , Filogenia , Animales , Análisis por Conglomerados , Pez Eléctrico/genética , Sitios Genéticos , Repeticiones de Microsatélite/genética , Distribución Normal , Análisis de Componente Principal , Reproducibilidad de los Resultados , Especificidad de la Especie
10.
Artículo en Inglés | MEDLINE | ID: mdl-25752300

RESUMEN

The electric organ (EO) of weakly electric mormyrids consists of flat, disk-shaped electrocytes with distinct anterior and posterior faces. There are multiple species-characteristic patterns in the geometry of the electrocytes and their innervation. To further correlate electric organ discharge (EOD) with EO anatomy, we examined four species of the mormyrid genus Campylomormyrus possessing clearly distinct EODs. In C. compressirostris, C. numenius, and C. tshokwe, all of which display biphasic EODs, the posterior face of the electrocytes forms evaginations merging to a stalk system receiving the innervation. In C. tamandua that emits a triphasic EOD, the small stalks of the electrocyte penetrate the electrocyte anteriorly before merging on the anterior side to receive the innervation. Additional differences in electrocyte anatomy among the former three species with the same EO geometry could be associated with further characteristics of their EODs. Furthermore, in C. numenius, ontogenetic changes in EO anatomy correlate with profound changes in the EOD. In the juvenile the anterior face of the electrocyte is smooth, whereas in the adult it exhibits pronounced surface foldings. This anatomical difference, together with disparities in the degree of stalk furcation, probably contributes to the about 12 times longer EOD in the adult.


Asunto(s)
Pez Eléctrico/anatomía & histología , Órgano Eléctrico/anatomía & histología , Animales , Pez Eléctrico/crecimiento & desarrollo , Pez Eléctrico/fisiología , Órgano Eléctrico/crecimiento & desarrollo , Órgano Eléctrico/fisiología , Electrodos , Femenino , Masculino , Fotomicrografía , Especificidad de la Especie
11.
Evol Appl ; 17(2): e13617, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38343775

RESUMEN

Genomic diversity is associated with the adaptive potential of a population and thereby impacts the extinction risk of a species during environmental change. However, empirical data on genomic diversity of populations before environmental perturbations are rare and hence our understanding of the impact of perturbation on diversity is often limited. We here assess genomic diversity utilising whole-genome resequencing data from all four species of the Lake Constance Alpine whitefish radiation. Our data covers a period of strong but transient anthropogenic environmental change and permits us to track changes in genomic diversity in all species over time. Genomic diversity became strongly reduced during the period of anthropogenic disturbance and has not recovered yet. The decrease in genomic diversity varies between 18% and 30%, depending on the species. Interspecific allele frequency differences of SNPs located in potentially ecologically relevant genes were homogenized over time. This suggests that in addition to the reduction of genome-wide genetic variation, the differentiation that evolved in the process of adaptation to alternative ecologies between species might have been lost during the ecological disturbance. The erosion of substantial amounts of genomic variation within just a few generations in combination with the loss of potentially adaptive genomic differentiation, both of which had evolved over thousands of years, demonstrates the sensitivity of biodiversity in evolutionary young adaptive radiations towards environmental disturbance. Natural history collections, such as the one used for this study, are instrumental in the assessment of genomic consequences of anthropogenic environmental change. Historical samples enable us to document biodiversity loss against the shifting baseline syndrome and advance our understanding of the need for efficient biodiversity conservation on a global scale.

12.
Evol Appl ; 17(1): e13620, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38283608

RESUMEN

Human activities have facilitated the invasion of freshwater ecosystems by various organisms. Especially, invasive bivalves such as the quagga mussels, Dreissena bugensis, have the potential to alter ecosystem function as they heavily affect the food web. Quagga mussels occur in high abundance, have a high filtration rate, quickly spread within and between waterbodies via pelagic larvae, and colonize various substrates. They have invaded various waterbodies across the Northern Hemisphere. In Central Europe, they have invaded multiple large and deep perialpine lakes with first recordings in Lake Geneva in 2015 and 2016 in Lake Constance. In the deep perialpine lakes, quagga mussels quickly colonized the littoral zone but are also abundant deeper (>80 m), where they are often thinner and brighter shelled. We analysed 675 quagga mussels using ddRAD sequencing to gain in-depth insights into the genetic population structure of quagga mussels across Central European lakes and across various sites and depth habitats in Lake Constance. We revealed substantial genetic differentiation amongst quagga mussel populations from three unconnected lakes, and all populations showed high genetic diversity and effective population size. In Lake Constance, we detected no genetic differentiation amongst quagga mussels sampled across different sites and depth habitats. We also did not identify any convincing candidate loci evidential for adaptation along a depth gradient and a transplant experiment showed no indications of local adaptation to living in the deep based on investigating growth and survival. Hence, the shallow-water and the deep-water morphotypes seem to be a result of phenotypic plasticity rather than local adaptation to depth. In conclusion, our ddRAD approach revealed insight into the establishment of genetically distinct quagga mussel populations in three perialpine lakes and suggests that phenotypic plasticity and life history traits (broadcast spawner with high fecundity and dispersing pelagic larvae) facilitate the fast spread and colonization of various depth habitats by the quagga mussel.

13.
Trends Genet ; 26(6): 275-84, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20444518

RESUMEN

Over the past decade, long-term studies of vertebrate populations have been the focus of many quantitative genetic studies. As a result, we have a clearer understanding of why some fitness-related traits are heritable and under selection, but are apparently not evolving. An exciting extension of this work is to identify the genes underlying phenotypic variation in natural populations. The advent of next-generation sequencing and high-throughput single nucleotide polymorphism (SNP) genotyping platforms means that mapping studies are set to become widespread in those wild populations for whom appropriate phenotypic data and DNA samples are available. Here, we highlight the progress made in this area and define evolutionary genetic questions that have become tractable with the arrival of these new genomics technologies.


Asunto(s)
Vertebrados/genética , Animales , Mapeo Cromosómico , Evolución Molecular , Genética de Población , Humanos , Polimorfismo de Nucleótido Simple
14.
Mol Ecol ; 22(16): 4210-4221, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23786437

RESUMEN

When domesticated species are not reproductively isolated from their wild relatives, the opportunity arises for artificially selected variants to be re-introduced into the wild. However, the evolutionary consequences of introgression of domesticated genes back into the wild are poorly understood. By combining high-throughput genotyping with 25 years of long-term ecological field data, we describe the occurrence and consequences of admixture between a primitive sheep breed, the free-living Soay sheep of St Kilda, and more modern breeds. Utilizing data from a 50 K ovine SNP chip, together with forward simulations of demographic scenarios, we show that admixture occurred between Soay sheep and a more modern breed, consistent with historical accounts, approximately 150 years ago. Haplotype-sharing analyses with other breeds revealed that polymorphisms in coat colour and pattern in Soay sheep arose as a result of introgression of genetic variants favoured by artificial selection. Because the haplotypes carrying the causative mutations are known to be under natural selection in free-living Soay sheep, the admixture event created an opportunity to observe the outcome of a 'natural laboratory' experiment where ancestral and domesticated genes competed with each other. The haplotype carrying the domesticated light coat colour allele was favoured by natural selection, while the haplotype associated with the domesticated self coat pattern allele was associated with decreased survival. Therefore, we demonstrate that introgression of domesticated alleles into wild populations can provide a novel source of variation capable of generating rapid evolutionary changes.


Asunto(s)
Animales Salvajes/genética , Variación Genética , Color del Cabello/genética , Selección Genética , Oveja Doméstica/genética , Ovinos/genética , Alelos , Animales , Evolución Biológica , Cruzamiento/métodos , Femenino , Especiación Genética , Haplotipos/genética , Masculino
15.
Mol Ecol ; 22(3): 635-49, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22747593

RESUMEN

Since the end of the Pleistocene, the three-spined stickleback (Gasterosteus aculeatus) has repeatedly colonized and adapted to various freshwater habitats probably originating from ancestral marine populations. Standing genetic variation and the underlying genomic architecture both have been speculated to contribute to recent adaptive radiations of sticklebacks. Here, we expand on the current genomic resources of this fish by providing extensive genome-wide variation data from six individuals from a marine (North Sea) stickleback population. Using next-generation sequencing and a combination of paired-end and mate-pair libraries, we detected a wide size range of genetic variation. Among the six individuals, we found more than 7% of the genome is polymorphic, consisting of 2599111 SNPs, 233464 indels and structural variation (SV) (>50 bp) such as 1054 copy-number variable regions (deletions and duplications) and 48 inversions. Many of these polymorphisms affect gene and coding sequences. Based on SNP diversity, we determined outlier regions concordant with signatures expected under adaptive evolution. As some of these outliers overlap with pronounced regions of copy-number variation, we propose the consideration of such SV when analysing SNP data from re-sequencing approaches. We further discuss the value of this resource on genome-wide variation for further investigation upon the relative contribution of standing variation on the parallel evolution of sticklebacks and the importance of the genomic architecture in adaptive radiation.


Asunto(s)
Evolución Biológica , Polimorfismo Genético , Smegmamorpha/genética , Animales , Femenino , Genética de Población , Genoma , Masculino , Mar del Norte , Análisis de Secuencia de ADN
17.
Mol Ecol Resour ; 23(7): 1706-1723, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37489282

RESUMEN

Genome sequencing enables answering fundamental questions about the genetic basis of adaptation, population structure and epigenetic mechanisms. Yet, we usually need a suitable reference genome for mapping population-level resequencing data. In some model systems, multiple reference genomes are available, giving the challenging task of determining which reference genome best suits the data. Here, we compared the use of two different reference genomes for the three-spined stickleback (Gasterosteus aculeatus), one novel genome derived from a European gynogenetic individual and the published reference genome of a North American individual. Specifically, we investigated the impact of using a local reference versus one generated from a distinct lineage on several common population genomics analyses. Through mapping genome resequencing data of 60 sticklebacks from across Europe and North America, we demonstrate that genetic distance among samples and the reference genomes impacts downstream analyses. Using a local reference genome increased mapping efficiency and genotyping accuracy, effectively retaining more and better data. Despite comparable distributions of the metrics generated across the genome using SNP data (i.e. π, Tajima's D and FST ), window-based statistics using different references resulted in different outlier genes and enriched gene functions. A marker-based analysis of DNA methylation distributions had a comparably high overlap in outlier genes and functions, yet with distinct differences depending on the reference genome. Overall, our results highlight how using a local reference genome decreases reference bias to increase confidence in downstream analyses of the data. Such results have significant implications in all reference-genome-based population genomic analyses.


Asunto(s)
Metagenómica , Smegmamorpha , Animales , Genoma/genética , Mapeo Cromosómico , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Smegmamorpha/genética
18.
Virus Evol ; 8(1): veac003, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35169490

RESUMEN

Characterizing how viruses evolve expands our understanding of the underlying fundamental processes, such as mutation, selection and drift. One group of viruses whose evolution has not yet been extensively studied is the Phycodnaviridae, a globally abundant family of aquatic large double-stranded (ds)DNA (dsDNA) viruses. Here we studied the evolutionary change of Paramecium bursaria chlorella virus 1 during experimental coevolution with its algal host. We used pooled genome sequencing of six independently evolved populations to characterize genomic change over five time points. Across six experimental replicates involving either strong or weak demographic fluctuations, we found single nucleotide polymorphisms (SNPs) at sixty-seven sites. The occurrence of genetic variants was highly repeatable, with just two of the SNPs found in only a single experimental replicate. Three genes A122/123R, A140/145R and A540L showed an excess of variable sites, providing new information about potential targets of selection during Chlorella-Chlorovirus coevolution. Our data indicated that the studied populations were not mutation-limited and experienced strong positive selection. Our investigation highlighted relevant processes governing the evolution of aquatic large dsDNA viruses, which ultimately contributes to a better understanding of the functioning of natural aquatic ecosystems.

19.
Nat Ecol Evol ; 6(4): 461-468, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35210577

RESUMEN

Ecosystem degradation and biodiversity loss are major global challenges. When reproductive isolation between species is contingent on the interaction of intrinsic lineage traits with features of the environment, environmental change can weaken reproductive isolation and result in extinction through hybridization. By this process called speciation reversal, extinct species can leave traces in genomes of extant species through introgressive hybridization. Using historical and contemporary samples, we sequenced all four species of an Alpine whitefish radiation before and after anthropogenic lake eutrophication and the associated loss of one species through speciation reversal. Despite the extinction of this taxon, substantial fractions of its genome, including regions shaped by positive selection before eutrophication, persist within surviving species as a consequence of introgressive hybridization during eutrophication. Given the prevalence of environmental change, studying speciation reversal and its genomic consequences provides fundamental insights into evolutionary processes and informs biodiversity conservation.


Asunto(s)
Especiación Genética , Salmonidae , Animales , Ecosistema , Genoma , Hibridación Genética , Salmonidae/genética
20.
Nat Commun ; 13(1): 4479, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918341

RESUMEN

Adaptive radiations represent some of the most remarkable explosions of diversification across the tree of life. However, the constraints to rapid diversification and how they are sometimes overcome, particularly the relative roles of genetic architecture and hybridization, remain unclear. Here, we address these questions in the Alpine whitefish radiation, using a whole-genome dataset that includes multiple individuals of each of the 22 species belonging to six ecologically distinct ecomorph classes across several lake-systems. We reveal that repeated ecological and morphological diversification along a common environmental axis is associated with both genome-wide allele frequency shifts and a specific, larger effect, locus, associated with the gene edar. Additionally, we highlight the possible role of introgression between species from different lake-systems in facilitating the evolution and persistence of species with unique trait combinations and ecology. These results highlight the importance of both genome architecture and secondary contact with hybridization in fuelling adaptive radiation.


Asunto(s)
Salmonidae , Animales , Evolución Biológica , Especiación Genética , Genoma/genética , Genómica , Hibridación Genética , Lagos , Filogenia , Salmonidae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA