Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(36): 21968-21977, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32839342

RESUMEN

Biofuel and bioenergy systems are integral to most climate stabilization scenarios for displacement of transport sector fossil fuel use and for producing negative emissions via carbon capture and storage (CCS). However, the net greenhouse gas mitigation benefit of such pathways is controversial due to concerns around ecosystem carbon losses from land use change and foregone sequestration benefits from alternative land uses. Here, we couple bottom-up ecosystem simulation with models of cellulosic biofuel production and CCS in order to track ecosystem and supply chain carbon flows for current and future biofuel systems, with comparison to competing land-based biological mitigation schemes. Analyzing three contrasting US case study sites, we show that on land transitioning out of crops or pasture, switchgrass cultivation for cellulosic ethanol production has per-hectare mitigation potential comparable to reforestation and severalfold greater than grassland restoration. In contrast, harvesting and converting existing secondary forest at those sites incurs large initial carbon debt requiring long payback periods. We also highlight how plausible future improvements in energy crop yields and biorefining technology together with CCS would achieve mitigation potential 4 and 15 times greater than forest and grassland restoration, respectively. Finally, we show that recent estimates of induced land use change are small relative to the opportunities for improving system performance that we quantify here. While climate and other ecosystem service benefits cannot be taken for granted from cellulosic biofuel deployment, our scenarios illustrate how conventional and carbon-negative biofuel systems could make a near-term, robust, and distinctive contribution to the climate challenge.


Asunto(s)
Biocombustibles/análisis , Carbono/análisis , Gases de Efecto Invernadero/análisis , Biocombustibles/efectos adversos , Biotecnología , Carbono/metabolismo , Celulosa/química , Celulosa/metabolismo , Productos Agrícolas/química , Productos Agrícolas/metabolismo , Ecosistema , Etanol/metabolismo , Gases de Efecto Invernadero/efectos adversos
2.
ACS Sustain Chem Eng ; 12(5): 1897-1910, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38333206

RESUMEN

Economically viable production of biobased products and fuels requires high-yielding, high-quality, sustainable process-advantaged crops, developed using bioengineering or advanced breeding approaches. Understanding which crop phenotypic traits have the largest impact on biofuel economics and sustainability outcomes is important for the targeted feedstock crop development. Here, we evaluated biomass yield and cell-wall composition traits across a large natural variant population of switchgrass (Panicum virgatum L.) grown across three common garden sites. Samples from 331 switchgrass genotypes were collected and analyzed for carbohydrate and lignin components. Considering plant survival and biomass after multiple years of growth, we found that 84 of the genotypes analyzed may be suited for commercial production in the southeastern U.S. These genotypes show a range of growth and compositional traits across the population that are apparently independent of each other. We used these data to conduct techno-economic analyses and life cycle assessments evaluating the performance of each switchgrass genotype under a standard cellulosic ethanol process model with pretreatment, added enzymes, and fermentation. We find that switchgrass yield per area is the largest economic driver of the minimum fuel selling price (MSFP), ethanol yield per hectare, global warming potential (GWP), and cumulative energy demand (CED). At any yield, the carbohydrate content is significant but of secondary importance. Water use follows similar trends but has more variability due to an increased dependence on the biorefinery model. Analyses presented here highlight the primary importance of plant yield and the secondary importance of carbohydrate content when selecting a feedstock that is both economical and sustainable.

3.
Environ Sci Technol ; 47(3): 1206-15, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23272937

RESUMEN

Biochar amendment to soil is a potential technology for carbon storage and climate change mitigation. It may, in addition, be a valuable soil fertility enhancer for agricultural purposes in sandy and/or weathered soils. A life cycle assessment including ecological, health and resource impacts has been conducted for field sites in Zambia to evaluate the overall impacts of biochar for agricultural use. The life cycle impacts from conservation farming using cultivation growth basins and precision fertilization with and without biochar addition were in the present study compared to conventional agricultural methods. Three different biochar production methods were evaluated: traditional earth-mound kilns, improved retort kilns, and micro top-lit updraft (TLUD) gasifier stoves. The results confirm that the use of biochar in conservation farming is beneficial for climate change mitigation purposes. However, when including health impacts from particle emissions originating from biochar production, conservation farming plus biochar from earth-mound kilns generally results in a larger negative effect over the whole life cycle than conservation farming without biochar addition. The use of cleaner technologies such as retort kilns or TLUDs can overcome this problem, mainly because fewer particles and less volatile organic compounds, methane and carbon monoxide are emitted. These results emphasize the need for a holistic view on biochar use in agricultural systems. Of special importance is the biochar production technique which has to be evaluated from both environmental/climate, health and social perspectives.


Asunto(s)
Agricultura/métodos , Carbón Orgánico/química , Conservación de los Recursos Naturales , Ambiente , Productos Agrícolas/crecimiento & desarrollo , Geografía , Zambia , Zea mays/crecimiento & desarrollo
4.
Glob Change Biol Bioenergy ; 10(3): 150-164, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29497458

RESUMEN

Perennial bioenergy crops have significant potential to reduce greenhouse gas (GHG) emissions and contribute to climate change mitigation by substituting for fossil fuels; yet delivering significant GHG savings will require substantial land-use change, globally. Over the last decade, research has delivered improved understanding of the environmental benefits and risks of this transition to perennial bioenergy crops, addressing concerns that the impacts of land conversion to perennial bioenergy crops could result in increased rather than decreased GHG emissions. For policymakers to assess the most cost-effective and sustainable options for deployment and climate change mitigation, synthesis of these studies is needed to support evidence-based decision making. In 2015, a workshop was convened with researchers, policymakers and industry/business representatives from the UK, EU and internationally. Outcomes from global research on bioenergy land-use change were compared to identify areas of consensus, key uncertainties, and research priorities. Here, we discuss the strength of evidence for and against six consensus statements summarising the effects of land-use change to perennial bioenergy crops on the cycling of carbon, nitrogen and water, in the context of the whole life-cycle of bioenergy production. Our analysis suggests that the direct impacts of dedicated perennial bioenergy crops on soil carbon and nitrous oxide are increasingly well understood and are often consistent with significant life cycle GHG mitigation from bioenergy relative to conventional energy sources. We conclude that the GHG balance of perennial bioenergy crop cultivation will often be favourable, with maximum GHG savings achieved where crops are grown on soils with low carbon stocks and conservative nutrient application, accruing additional environmental benefits such as improved water quality. The analysis reported here demonstrates there is a mature and increasingly comprehensive evidence base on the environmental benefits and risks of bioenergy cultivation which can support the development of a sustainable bioenergy industry.

5.
Front Plant Sci ; 4: 218, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23847629

RESUMEN

Bioenergy will be one component of a suite of alternatives to fossil fuels. Effective conversion of biomass to energy will require the careful pairing of advanced conversion technologies with biomass feedstocks optimized for the purpose. Lignocellulosic biomass can be converted to useful energy products via two distinct pathways: enzymatic or thermochemical conversion. The thermochemical pathways are reviewed and potential biotechnology or breeding targets to improve feedstocks for pyrolysis, gasification, and combustion are identified. Biomass traits influencing the effectiveness of the thermochemical process (cell wall composition, mineral and moisture content) differ from those important for enzymatic conversion and so properties are discussed in the language of biologists (biochemical analysis) as well as that of engineers (proximate and ultimate analysis). We discuss the genetic control, potential environmental influence, and consequences of modification of these traits. Improving feedstocks for thermochemical conversion can be accomplished by the optimization of lignin levels, and the reduction of ash and moisture content. We suggest that ultimate analysis and associated properties such as H:C, O:C, and heating value might be more amenable than traditional biochemical analysis to the high-throughput necessary for the phenotyping of large plant populations. Expanding our knowledge of these biomass traits will play a critical role in the utilization of biomass for energy production globally, and add to our understanding of how plants tailor their composition with their environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA