Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nature ; 603(7901): 450-454, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35296848

RESUMEN

About half of the anthropogenic CO2 emissions remain in the atmosphere and half are taken up by the land and ocean1. If the carbon uptake by land and ocean sinks becomes less efficient, for example, owing to warming oceans2 or thawing permafrost3, a larger fraction of anthropogenic emissions will remain in the atmosphere, accelerating climate change. Changes in the efficiency of the carbon sinks can be estimated indirectly by analysing trends in the airborne fraction, that is, the ratio between the atmospheric growth rate and anthropogenic emissions of CO2 (refs. 4-10). However, current studies yield conflicting results about trends in the airborne fraction, with emissions related to land use and land cover change (LULCC) contributing the largest source of uncertainty7,11,12. Here we construct a LULCC emissions dataset using visibility data in key deforestation zones. These visibility observations are a proxy for fire emissions13,14, which are - in turn - related to LULCC15,16. Although indirect, this provides a long-term consistent dataset of LULCC emissions, showing that tropical deforestation emissions increased substantially (0.16 Pg C decade-1) since the start of CO2 concentration measurements in 1958. So far, these emissions were thought to be relatively stable, leading to an increasing airborne fraction4,5. Our results, however, indicate that the CO2 airborne fraction has decreased by 0.014 ± 0.010 decade-1 since 1959. This suggests that the combined land-ocean sink has been able to grow at least as fast as anthropogenic emissions.


Asunto(s)
Atmósfera , Dióxido de Carbono , Dióxido de Carbono/análisis , Secuestro de Carbono , Cambio Climático , Océanos y Mares
3.
Proc Natl Acad Sci U S A ; 113(33): 9204-9, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27482096

RESUMEN

The 2015 fire season and related smoke pollution in Indonesia was more severe than the major 2006 episode, making it the most severe season observed by the NASA Earth Observing System satellites that go back to the early 2000s, namely active fire detections from the Terra and Aqua Moderate Resolution Imaging Spectroradiometers (MODIS), MODIS aerosol optical depth, Terra Measurement of Pollution in the Troposphere (MOPITT) carbon monoxide (CO), Aqua Atmospheric Infrared Sounder (AIRS) CO, Aura Ozone Monitoring Instrument (OMI) aerosol index, and Aura Microwave Limb Sounder (MLS) CO. The MLS CO in the upper troposphere showed a plume of pollution stretching from East Africa to the western Pacific Ocean that persisted for 2 mo. Longer-term records of airport visibility in Sumatra and Kalimantan show that 2015 ranked after 1997 and alongside 1991 and 1994 as among the worst episodes on record. Analysis of yearly dry season rainfall from the Tropical Rainfall Measurement Mission (TRMM) and rain gauges shows that, due to the continued use of fire to clear and prepare land on degraded peat, the Indonesian fire environment continues to have nonlinear sensitivity to dry conditions during prolonged periods with less than 4 mm/d of precipitation, and this sensitivity appears to have increased over Kalimantan. Without significant reforms in land use and the adoption of early warning triggers tied to precipitation forecasts, these intense fire episodes will reoccur during future droughts, usually associated with El Niño events.


Asunto(s)
Contaminación del Aire , Sequías , El Niño Oscilación del Sur , Incendios , Humo , Monóxido de Carbono/análisis , Indonesia , Factores de Tiempo
4.
Global Biogeochem Cycles ; 31(1): 24-38, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28286373

RESUMEN

Consistent long-term estimates of fire emissions are important to understand the changing role of fire in the global carbon cycle and to assess the relative importance of humans and climate in shaping fire regimes. However, there is limited information on fire emissions from before the satellite era. We show that in the Amazon region, including the Arc of Deforestation and Bolivia, visibility observations derived from weather stations could explain 61% of the variability in satellite-based estimates of bottom-up fire emissions since 1997 and 42% of the variability in satellite-based estimates of total column carbon monoxide concentrations since 2001. This enabled us to reconstruct the fire history of this region since 1973 when visibility information became available. Our estimates indicate that until 1987 relatively few fires occurred in this region and that fire emissions increased rapidly over the 1990s. We found that this pattern agreed reasonably well with forest loss data sets, indicating that although natural fires may occur here, deforestation and degradation were the main cause of fires. Compared to fire emissions estimates based on Food and Agricultural Organization's Global Forest and Resources Assessment data, our estimates were substantially lower up to the 1990s, after which they were more in line. These visibility-based fire emissions data set can help constrain dynamic global vegetation models and atmospheric models with a better representation of the complex fire regime in this region.

5.
Geophys Res Lett ; 44(19): 9996-10005, 2017 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-32803204

RESUMEN

We conducted a case study of NCEP CFSv2 seasonal model forecast performance over Indonesia in predicting the dry conditions in 2015 that led to severe fire, in comparison to the non-El Niño dry season conditions of 2016. Forecasts of the Drought Code (DC) component of Indonesia's Fire Danger Rating System were examined across the entire Equatorial Asia region and for the primary burning regions within it. Our results show that early warning lead times of high observed DC in September and October 2015 varied considerably for different regions. High DC over Southern Kalimantan and Southern New Guinea were predicted with 180-day lead times, whereas Southern Sumatra had lead times of up to only 60 days, which we attribute to the absence in the forecasts of an eastward decrease in Indian Ocean SSTs. This case study provides the starting point for longer-term evaluation of seasonal fire danger rating forecasts over Indonesia.

6.
Rev Geophys ; 54(4): 809-865, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32661517

RESUMEN

The measurement and simulation of water vapor isotopic composition has matured rapidly over the last decade, with long-term datasets and comprehensive modeling capabilities now available. Theories for water vapor isotopic composition have been developed by extending the theories that have been used for the isotopic composition of precipitation to include a more nuanced understanding of evaporation, large-scale mixing, deep convection, and kinetic fractionation. The technologies for in-situ and remote sensing measurements of water vapor isotopic composition have developed especially rapidly over the last decade, with discrete water vapor sampling methods, based on mass spectroscopy, giving way to laser spectroscopic methods and satellite- and ground-based infrared absorption techniques. The simulation of water vapor isotopic composition has evolved from General Circulation Model (GCM) methods for simulating precipitation isotopic composition to sophisticated isotope-enabled microphysics schemes using higher-order moments for water- and ice-size distributions. The incorporation of isotopes into GCMs has enabled more detailed diagnostics of the water cycle and has led to improvements in its simulation. The combination of improved measurement and modeling of water vapor isotopic composition opens the door to new advances in our understanding of the atmospheric water cycle, in processes ranging from the marine boundary layer, through deep convection and tropospheric mixing, and into the water cycle of the stratosphere. Finally, studies of the processes governing modern water vapor isotopic composition provide an improved framework for the interpretation of paleoclimate proxy records of the hydrological cycle.

7.
Mil Med ; 185(5-6): e904-e908, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-31865387

RESUMEN

A 19-year-old active duty Marine presented to clinic with a history of a reoccurring vesicular rash on left side of his forehead. The lesion was cultured and identified as herpes simplex virus 1 (HSV-1). Herpes gladiatorum is a recurrent cutaneous infection caused by HSV-1 and spread by skin-to-skin contact. Serious complications have been reported, including blindness from acute retinal necrosis. Outbreaks of herpes gladiatorum have been observed in the high school and collegiate wrestling community for years and to prevent the spread, screening, and treatment guidelines have been implemented by governing bodies of these organizations. Active duty members who participate in the Marine Corps Martial Arts Program and the Army and US Air Force Combatives programs are exposed to similar conditions; however, no uniform screening or treatment protocol exists. To minimize the spread of skin infections, we propose adopting a uniform screening procedure and implementing a standardized form to assist primary care providers in the evaluation and treatment of herpes gladiatorum and other communicable skin diseases commonly seen in close combat training.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Herpes Simple/diagnóstico , Humanos , Artes Marciales , Recurrencia , Enfermedades Cutáneas Infecciosas , Lucha , Adulto Joven
8.
Sci Rep ; 9(1): 16594, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31719586

RESUMEN

Northwestern India is known as the "breadbasket" of the country producing two-thirds of food grains, with wheat and rice as the principal crops grown under the crop rotation system. Agricultural data from India indicates a 25% increase in the post-monsoon rice crop production in Punjab during 2002-2016. NASA's A-train satellite sensors detect a consistent increase in the vegetation index (net 21%) and post-harvest agricultural fire activity (net ~60%) leading to nearly 43% increase in aerosol loading over the populous Indo-Gangetic Plain in northern India. The ground-level particulate matter (PM2.5) downwind over New Delhi shows a concurrent uptrend of net 60%. The effectiveness of a robust satellite-based relationship between vegetation index-a proxy for crop amounts, and post-harvest fires-a precursor of extreme air pollution events, has been further demonstrated in predicting the seasonal agricultural burning. An efficient crop residue management system is critically needed towards eliminating open field burning to mitigate episodic hazardous air quality over northern India.

9.
Ultramicroscopy ; 107(8): 698-702, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17350170

RESUMEN

A new method for the determination of the crystallographic indices of planar fracture surfaces is described. The key innovation is the use of a focused ion beam instrument to extract two transmission electron microscopy (TEM) foils from the fracture surface. Selected area diffraction of these foils in the TEM allows the determination of the fracture plane from the cross product of two crystallographic line directions contained within the plane. This allows the indices to be determined from relatively small fracture surfaces, affording fracture plane determinations from facets on polycrystalline samples. The validation of this method using cleavage fracture in pure zinc is described.

10.
J Geophys Res Atmos ; 121(8): 4296-4316, 2016 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32747872

RESUMEN

We simulated the high-altitude smoke plume from the early February 2009 Black Saturday bushfires in southeastern Australia using the NASA GISS ModelE2. To the best of our knowledge, this is the first single-plume analysis of biomass burning emissions injected directly into the upper-troposphere/lower stratosphere (UTLS) using a full-complexity composition-climate model. We compared simulated carbon monoxide (CO) to a new Aura TES/MLS joint CO retrieval, focusing on the plume's initial transport eastward, anticyclonic circulation to the north of New Zealand, westward transport in the lower stratospheric easterlies, and arrival over Africa at the end of February. Our goal was to determine the sensitivity of the simulated plume to prescribed injection height, emissions amount and emissions timing from different sources for a full complexity model when compared to Aura. The most realistic plumes were obtained using injection heights in the UTLS, including one drawn from ground-based radar data. A six-hour emissions pulse or emissions tied to independent estimates of hourly fire behavior produced a more realistic plume in the lower stratosphere compared to the same emissions amount being released evenly over 12 or 24-hours. Simulated CO in the plume was highly sensitive to the differences between emissions amounts estimated from the Global Fire Emissions Database and from detailed, ground-based estimates of fire growth. The emissions amount determined not only the CO concentration of the plume, but the proportion of the plume that entered the stratosphere. We speculate that this is due to either or both non-linear CO loss with a weakened OH sink, or plume self-lofting driven by shortwave absorption of the co-emitted aerosols.

11.
Environ Manage ; 35(4): 426-40, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15902449

RESUMEN

Vegetation fires have become an increasing problem in tropical environments as a consequence of socioeconomic pressures and subsequent land-use change. In response, fire management systems are being developed. This study set out to determine the relationships between two aspects of the fire problems in western Indonesia and Malaysia, and two components of the Canadian Forest Fire Weather Index System. The study resulted in a new method for calibrating components of fire danger rating systems based on satellite fire detection (hotspot) data. Once the climate was accounted for, a problematic number of fires were related to high levels of the Fine Fuel Moisture Code. The relationship between climate, Fine Fuel Moisture Code, and hotspot occurrence was used to calibrate Fire Occurrence Potential classes where low accounted for 3% of the fires from 1994 to 2000, moderate accounted for 25%, high 26%, and extreme 38%. Further problems arise when there are large clusters of fires burning that may consume valuable land or produce local smoke pollution. Once the climate was taken into account, the hotspot load (number and size of clusters of hotspots) was related to the Fire Weather Index. The relationship between climate, Fire Weather Index, and hotspot load was used to calibrate Fire Load Potential classes. Low Fire Load Potential conditions (75% of an average year) corresponded with 24% of the hotspot clusters, which had an average size of 30% of the largest cluster. In contrast, extreme Fire Load Potential conditions (1% of an average year) corresponded with 30% of the hotspot clusters, which had an average size of 58% of the maximum. Both Fire Occurrence Potential and Fire Load Potential calibrations were successfully validated with data from 2001. This study showed that when ground measurements are not available, fire statistics derived from satellite fire detection archives can be reliably used for calibration. More importantly, as a result of this work, Malaysia and Indonesia have two new sources of information to initiate fire prevention and suppression activities.


Asunto(s)
Incendios/prevención & control , Predicción/métodos , Calibración , Canadá , Clima , Indonesia , Malasia , Nave Espacial , Tiempo (Meteorología)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA