Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(52): 33414-33425, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318186

RESUMEN

The ability to accurately measure mutations is critical for basic research and identifying potential drug and chemical carcinogens. Current methods for in vivo quantification of mutagenesis are limited because they rely on transgenic rodent systems that are low-throughput, expensive, prolonged, and do not fully represent other species such as humans. Next-generation sequencing (NGS) is a conceptually attractive alternative for detecting mutations in the DNA of any organism; however, the limit of resolution for standard NGS is poor. Technical error rates (∼1 × 10-3) of NGS obscure the true abundance of somatic mutations, which can exist at per-nucleotide frequencies ≤1 × 10-7 Using duplex sequencing, an extremely accurate error-corrected NGS (ecNGS) technology, we were able to detect mutations induced by three carcinogens in five tissues of two strains of mice within 31 d following exposure. We observed a strong correlation between mutation induction measured by duplex sequencing and the gold-standard transgenic rodent mutation assay. We identified exposure-specific mutation spectra of each compound through trinucleotide patterns of base substitution. We observed variation in mutation susceptibility by genomic region, as well as by DNA strand. We also identified a primordial marker of carcinogenesis in a cancer-predisposed strain of mice, as evidenced by clonal expansions of cells carrying an activated oncogene, less than a month after carcinogen exposure. These findings demonstrate that ecNGS is a powerful method for sensitively detecting and characterizing mutagenesis and the early clonal evolutionary hallmarks of carcinogenesis. Duplex sequencing can be broadly applied to basic mutational research, regulatory safety testing, and emerging clinical applications.


Asunto(s)
Carcinogénesis/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutagénesis/genética , Animales , Carcinógenos/toxicidad , Análisis por Conglomerados , ADN/genética , Genes ras , Sitios Genéticos , Genoma , Humanos , Ratones Transgénicos , Mutación/genética , Neoplasias/genética , Oncogenes , Fenotipo , Transcripción Genética
2.
Int J Toxicol ; 35(3): 294-308, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26941242

RESUMEN

Etelcalcetide is a novel d-amino acid peptide that functions as an allosteric activator of the calcium-sensing receptor and is being developed as an intravenous calcimimetic for the treatment of secondary hyperparathyroidism in patients with chronic kidney disease on hemodialysis. To support clinical development and marketing authorization, a comprehensive nonclinical safety package was generated. Primary adverse effects included hypocalcemia, tremoring, and convulsions. Other adverse effects were considered sequelae of stress associated with hypocalcemia. Cardiovascular safety evaluations in the dog revealed an anticipated prolongation of the corrected QT interval that was related to reductions in serum calcium. Etelcalcetide did not affect the human ether-a-go-go gene ion channel current. Etelcalcetide was mutagenic in some strains of Salmonella, however, based on the negative results in 2 in vitro and 2 in vivo mammalian genotoxicity assays, including a 28-day Muta mouse study, etelcalcetide is considered nongenotoxic. Further support for a lack of genotoxicity was provided due to the fact that etelcalcetide was not carcinogenic in a 6-month transgenic rasH2 mouse model or a 2-year study in rats. There were no effects on fertility, embryo-fetal development, and prenatal and postnatal development. All of the adverse effects observed in both rat and dog were considered directly or secondarily related to the pharmacologic activity of etelcalcetide and the expected sequelae associated with dose-related reductions in serum calcium due to suppression of parathyroid hormone secretion. These nonclinical data indicate no safety signal of concern for human risk beyond that associated with hypocalcemia and associated QT prolongation.


Asunto(s)
Péptidos/toxicidad , Animales , Presión Sanguínea/efectos de los fármacos , Calcio/sangre , Perros , Canal de Potasio ERG1/fisiología , Femenino , Células HEK293 , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Hiperparatiroidismo Secundario/tratamiento farmacológico , Hipocalcemia/inducido químicamente , Masculino , Ratones Transgénicos , Pruebas de Mutagenicidad , Péptidos/farmacocinética , Péptidos/farmacología , Péptidos/uso terapéutico , Conejos , Ratas Sprague-Dawley , Reproducción/efectos de los fármacos , Convulsiones/inducido químicamente , Temblor/inducido químicamente
3.
Toxicol Pathol ; 43(4): 581-92, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25361751

RESUMEN

ß-Secretase 1 (BACE1) represents an attractive target for the treatment of Alzheimer's disease. In the course of development of a novel small molecule BACE1 inhibitor (AMG-8718), retinal thinning was observed in a 1-month toxicity study in the rat. To further understand the lesion, an investigational study was conducted whereby rats were treated daily with AMG-8718 for 1 month followed by a 2-month treatment-free phase. The earliest detectable change in the retina was an increase in autofluorescent granules in the retinal pigment epithelium (RPE) on day 5; however, there were no treatment-related light microscopic changes observed in the neuroretina and no changes observed by fundus autofluorescence or routine ophthalmoscopic examination after 28 days of dosing. Following 2 months of recovery, there was significant retinal thinning attributed to loss of photoreceptor nuclei from the outer nuclear layer. Electroretinographic changes were observed as early as day 14, before any microscopic evidence of photoreceptor loss. BACE1 knockout rats were generated and found to have normal retinal morphology indicating that the retinal toxicity induced by AMG-8718 was likely off-target. These results suggest that AMG-8718 impairs phagolysosomal function in the rat RPE, which leads to photoreceptor dysfunction and ultimately loss of photoreceptors.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Benzopiranos/toxicidad , Inhibidores Enzimáticos/toxicidad , Piridinas/toxicidad , Retina/efectos de los fármacos , Enfermedades de la Retina/inducido químicamente , Compuestos de Espiro/toxicidad , Animales , Electrorretinografía , Masculino , Ratas , Ratas Sprague-Dawley , Retina/enzimología , Retina/patología , Enfermedades de la Retina/enzimología , Tomografía de Coherencia Óptica
4.
Regul Toxicol Pharmacol ; 70(1): 87-97, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24932799

RESUMEN

Large molecule therapeutics (MW>1000daltons) are not expected to enter the cell and thus have reduced potential to interact directly with DNA or related physiological processes. Genotoxicity studies are therefore not relevant and typically not required for large molecule therapeutic candidates. Regulatory guidance supports this approach; however there are examples of marketed large molecule therapeutics where sponsors have conducted genotoxicity studies. A retrospective analysis was performed on genotoxicity studies of United States FDA approved large molecule therapeutics since 1998 identified through the Drugs@FDA website. This information was used to provide a data-driven rationale for genotoxicity evaluations of large molecule therapeutics. Fifty-three of the 99 therapeutics identified were tested for genotoxic potential. None of the therapeutics tested showed a positive outcome in any study except the peptide glucagon (GlucaGen®) showing equivocal in vitro results, as stated in the product labeling. Scientific rationale and data from this review indicate that testing of a majority of large molecule modalities do not add value to risk assessment and support current regulatory guidance. Similarly, the data do not support testing of peptides containing only natural amino acids. Peptides containing non-natural amino acids and small molecules in conjugated products may need to be tested.


Asunto(s)
Pruebas de Mutagenicidad/métodos , Preparaciones Farmacéuticas/administración & dosificación , Medición de Riesgo/métodos , Aprobación de Drogas , Etiquetado de Medicamentos , Glucagón/toxicidad , Humanos , Peso Molecular , Péptidos/toxicidad , Preparaciones Farmacéuticas/química , Estudios Retrospectivos , Estados Unidos , United States Food and Drug Administration
5.
Toxicol Pathol ; 39(4): 664-77, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21551028

RESUMEN

During routine safety evaluation of RO2910, a non-nucleoside reverse transcriptase inhibitor for HIV infection, histopathology findings concurrent with robust hepatocellular induction occurred in multiple organs, including a unique, albeit related, finding in the pituitary gland. For fourteen days, male and female rats were administered, by oral gavage vehicle, 100, 300, or 1000 mg/kg/day of RO2910. Treated groups had elevated serum thyroid-stimulating hormone and decreased total thyroxine, and hypertrophy in the liver, thyroid gland, and pituitary pars distalis. These were considered consequences of hepatocellular induction and often were dose dependent and more pronounced in males than in females. Hepatocellular centrilobular hypertrophy corresponded with increased expression of cytochrome P450s 2B1/2, 3A1, and 3A2 and UGT 2B1. Bilateral thyroid follicular cell hypertrophy occurred concurrent to increased mitotic activity and sometimes colloid depletion, which were attributed to changes in thyroid hormone levels. Males had hypertrophy of thyroid-stimulating hormone-producing cells (thyrotrophs) in the pituitary pars distalis. All findings were consistent with the well-established adaptive physiologic response of rodents to xenobiotic-induced hepatocellular microsomal enzyme induction. Although the effects on the pituitary gland following hepatic enzyme induction-mediated hypothyroidism have not been reported previously, other models of stress and thyroid depletion leading to pituitary stimulation support such a shared pathogenesis.


Asunto(s)
Hígado/enzimología , Hipófisis/efectos de los fármacos , Inhibidores de la Transcriptasa Inversa/efectos adversos , Glándula Tiroides/efectos de los fármacos , Xenobióticos/efectos adversos , Administración Oral , Animales , Células Cultivadas , Sistema Enzimático del Citocromo P-450/metabolismo , Inducción Enzimática , Femenino , Glucuronosiltransferasa/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Homeostasis/efectos de los fármacos , Hormonas Hipotalámicas/sangre , Inmunohistoquímica , Hígado/patología , Masculino , Mitosis/efectos de los fármacos , Hipófisis/patología , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Inhibidores de la Transcriptasa Inversa/metabolismo , Factores Sexuales , Glándula Tiroides/patología , Tirotropina/sangre , Tiroxina/sangre , Xenobióticos/metabolismo
6.
Environ Mol Mutagen ; 61(8): 770-785, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32078182

RESUMEN

Genome instability is a hallmark of most human cancers and is exacerbated following replication stress. However, the effects that drugs/xenobiotics have in promoting genome instability including chromosomal structural rearrangements in normal cells are not currently assessed in the genetic toxicology battery. Here, we show that drug-induced replication stress leads to increased genome instability in vitro using proliferating primary human cells as well as in vivo in rat bone marrow (BM) and duodenum (DD). p53-binding protein 1 (53BP1, biomarker of DNA damage repair) nuclear bodies were increased in a dose-dependent manner in normal proliferating human mammary epithelial fibroblasts following treatment with compounds traditionally classified as either genotoxic (hydralazine) and nongenotoxic (low-dose aphidicolin, duvelisib, idelalisib, and amiodarone). Comparatively, no increases in 53BP1 nuclear bodies were observed in nonproliferating cells. Negative control compounds (mannitol, alosteron, diclofenac, and zonisamide) not associated with cancer risk did not induce 53BP1 nuclear bodies in any cell type. Finally, we studied the in vivo genomic consequences of drug-induced replication stress in rats treated with 10 mg/kg of cyclophosphamide for up to 14 days followed by polymerase chain reaction-free whole genome sequencing (30X coverage) of BM and DD cells. Cyclophosphamide induced chromosomal structural rearrangements at an average of 90 genes, including 40 interchromosomal/intrachromosomal translocations, within 2 days of treatment. Collectively, these data demonstrate that this drug-induced genome instability test (DiGIT) can reveal potential adverse effects of drugs not otherwise informed by standard genetic toxicology testing batteries. These efforts are aligned with the food and drug administration's (FDA's) predictive toxicology roadmap initiative.


Asunto(s)
Replicación del ADN/efectos de los fármacos , Genoma/efectos de los fármacos , Inestabilidad Genómica , Animales , Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Biomarcadores/metabolismo , Aberraciones Cromosómicas , Ciclofosfamida/toxicidad , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Secuenciación Completa del Genoma
7.
Mol Syst Biol ; 4: 175, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18364709

RESUMEN

We have used a supervised classification approach to systematically mine a large microarray database derived from livers of compound-treated rats. Thirty-four distinct signatures (classifiers) for pharmacological and toxicological end points can be identified. Just 200 genes are sufficient to classify these end points. Signatures were enriched in xenobiotic and immune response genes and contain un-annotated genes, indicating that not all key genes in the liver xenobiotic responses have been characterized. Many signatures with equal classification capabilities but with no gene in common can be derived for the same phenotypic end point. The analysis of the union of all genes present in these signatures can reveal the underlying biology of that end point as illustrated here using liver fibrosis signatures. Our approach using the whole genome and a diverse set of compounds allows a comprehensive view of most pharmacological and toxicological questions and is applicable to other situations such as disease and development.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Xenobióticos/farmacología , Animales , Bases de Datos Genéticas , Genómica , Hígado/patología , Cirrosis Hepática/genética , Ratas , Reproducibilidad de los Resultados
8.
Toxicology ; 246(2-3): 91-100, 2008 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-18289764

RESUMEN

Drug-induced renal injury is a common finding in the early preclinical phase of drug development. But the specific genes responding to renal injury remain poorly defined. Identification of drug-induced gene changes is critical to provide insights into molecular mechanisms and detection of renal damage. To identify genes associated with the development of drug-induced nephrotoxicity, a literature survey was conducted and a panel of 48 genes was selected based on gene expression changes in multiple published studies. Male Sprague-Dawley rats were dosed daily for 1, 3 or 5 days to the known nephrotoxicants gentamicin, bacitracin, vancomycin and cisplatin, or the known hepatotoxicants ketoconazole, 1-naphthyl isothiocyanate and 4,4-diaminodiphenylmethane. Histopathological evaluation and clinical chemistry revealed renal proximal tubular necrosis in rats treated with the nephrotoxicants, but not from those treated with the hepatotoxicants. RNA was extracted from the kidney, and RT-PCR was performed to evaluate expression profiles of the selected genes. Among the genes examined, 24 genes are confirmed to be highly induced or repressed in rats treated with nephrotoxicants; further investigation identified that 5 of the 24 genes were also altered by hepatotoxicants. These data led to the identification of a set of genomic biomarker candidates whose expression in kidney is selectively regulated only by nephrotoxicants. Among those genes displaying the highest expression changes specifically in nephrotoxicant-treated rats were kidney injury molecule 1 (Kim1), lipocalin 2 (Lcn2), and osteopontin (Spp1). The establishment of such a genomic marker set offers a new tool in our ongoing quest to monitor nephrotoxicity.


Asunto(s)
Antibacterianos/toxicidad , Antineoplásicos/toxicidad , Marcadores Genéticos , Enfermedades Renales/inducido químicamente , Enfermedades Renales/genética , Riñón/efectos de los fármacos , Animales , Bacitracina/toxicidad , Cisplatino/toxicidad , Expresión Génica/genética , Perfilación de la Expresión Génica , Gentamicinas/toxicidad , Riñón/metabolismo , Riñón/patología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Toxicogenética , Vancomicina/toxicidad
9.
Trends Pharmacol Sci ; 39(3): 232-247, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29242029

RESUMEN

Cancer risk assessment of therapeutics is plagued by poor translatability of rodent models of carcinogenesis. In order to overcome this fundamental limitation, new approaches are needed that enable us to evaluate cancer risk directly in humans and human-based cellular models. Our enhanced understanding of the mechanisms of carcinogenesis and the influence of human genome sequence variation on cancer risk motivates us to re-evaluate how we assess the carcinogenic risk of therapeutics. This review will highlight new opportunities for applying this knowledge to the development of a battery of human-based in vitro models and biomarkers for assessing cancer risk of novel therapeutics.


Asunto(s)
Carcinógenos/toxicidad , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Neoplasias/prevención & control , Farmacovigilancia , Biomarcadores Farmacológicos/análisis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Predisposición Genética a la Enfermedad , Humanos
10.
Toxicol Sci ; 99(1): 90-100, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17557906

RESUMEN

There are currently no accurate and well-validated short-term tests to identify nongenotoxic hepatic tumorigens, thus necessitating an expensive 2-year rodent bioassay before a risk assessment can begin. Using hepatic gene expression data from rats treated for 5 days with one of 100 structurally and mechanistically diverse nongenotoxic hepatocarcinogens and nonhepatocarcinogens, a novel multigenebiomarker (i.e., signature) was derived to predict the likelihood of nongenotoxic chemicals to induce liver tumors in longer term studies. Independent validation of the signature on 47 test chemicals indicates an assay sensitivity and specificity of 86% and 81%, respectively. Alternate short-term in vivo pathological and genomic biomarkers were evaluated in parallel for comparison, including liver weight, hepatocellular hypertrophy, hepatic necrosis, serum alanine aminotransferase activity, induction of cytochrome P450 genes, and repression of Tsc-22 or alpha2-macroglobulin messenger RNA. In contrast to these biomarkers, the gene expression-based signature was more accurate. Unlike existing tests, an understanding of potential modes of action for hepatic tumorigenicity can be derived by comparison of the signature profile of test chemicals to hepatic tumorigens of known mechanism, including regenerative proliferation, proliferation associated with xenobiotic receptor activation, peroxisome proliferation, and steroid hormone-mediated mechanisms. This signature is not only more accurate than current methods, but also facilitates the identification of mode of action to aid in the early assessment of human cancer risk.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinógenos/toxicidad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Hepáticas Experimentales/genética , Alanina Transaminasa/sangre , Animales , Biomarcadores de Tumor/metabolismo , Carcinógenos/clasificación , Sistema Enzimático del Citocromo P-450/biosíntesis , Inducción Enzimática , Hepatocitos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Neoplasias Hepáticas Experimentales/metabolismo , Masculino , Necrosis , Análisis de Secuencia por Matrices de Oligonucleótidos , Valor Predictivo de las Pruebas , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Reproducibilidad de los Resultados , alfa-Macroglobulinas/genética , alfa-Macroglobulinas/metabolismo
11.
Medchemcomm ; 8(6): 1196-1206, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30108829

RESUMEN

As part of an ongoing effort at Amgen to develop a disease-modifying therapy for Alzheimer's disease, we have previously used the aminooxazoline xanthene (AOX) scaffold to generate potent and orally efficacious BACE1 inhibitors. While AOX-BACE1 inhibitors demonstrated acceptable cardiovascular safety margins, a retinal pathological finding in rat toxicological studies demanded further investigation. It has been widely postulated that such retinal toxicity might be related to off-target inhibition of Cathepsin D (CatD), a closely related aspartyl protease. We report the development of AOX-BACE1 inhibitors with improved selectivity against CatD by following a structure- and property-based approach. Our efforts culminated in the discovery of a picolinamide-substituted 3-aza-AOX-BACE1 inhibitor absent of retinal effects in an early screening rat toxicology study.

12.
Curr Opin Drug Discov Devel ; 9(1): 84-91, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16445120

RESUMEN

Predictive toxicogenomics, ie, the acquisition of advanced knowledge of the safety profile of a compound using genomic biomarkers, is a technology that provides much optimism for improving early drug discovery decisions. Toxicogenomics creates an opportunity to shift attrition to earlier stages in drug development to a point where course-corrective action can be taken with relatively lower financial costs, thus improving the efficiency of the drug development process. This review will survey the current state-of-the-art in toxicogenomics for predicting toxicity, both in vivo and in vitro, with emphasis on the use of classification algorithms and the importance of toxicogenomic databases for biomarker discovery and validation.


Asunto(s)
Evaluación Preclínica de Medicamentos/tendencias , Pruebas de Toxicidad/tendencias , Toxicogenética/tendencias , Algoritmos , Animales , Biomarcadores , Bases de Datos como Asunto , Diseño de Fármacos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Toxicogenética/economía
13.
Am J Pharmacogenomics ; 5(3): 161-71, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15952870

RESUMEN

The economic hurdles of drug development and the emergence of genomic technologies such as chemogenomics are combining to shift the existing paradigms in preclinical drug development. Today, the information gleaned from high content molecular data has begun to augment traditional approaches to the assessment of drug safety. The optimal approach is a hybrid strategy employing chemogenomic data and gene expression-based biomarkers of drug efficacy and toxicity to supplement low content and insensitive methods for risk assessment and mechanistic evaluation of drug candidates. Large reference databases of chemogenomic data are essential to the derivation and validation of accurate and predictive gene expression biomarkers. An example of the development of a predictive biomarker for hepatic bile duct hyperplasia is described herein. As gene expression technologies improve, biomarkers will achieve higher throughput, and become more cost effective and increasingly accurate. This will elevate the value of chemogenomics in drug development, shift attrition to earlier in the process, and reduce the overall cost of drug development. Over the past 2 to 3 years, the transition of chemogenomics from a research tool to a decision-making tool has begun and regulatory agencies are anxiously awaiting implementation of this technology to make faster and more informed evaluations of potential drugs.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Hígado/efectos de los fármacos , Farmacogenética/métodos , Animales , Conductos Biliares/metabolismo , Conductos Biliares/patología , Biomarcadores , Carcinógenos/toxicidad , Bases de Datos Factuales , Perfilación de la Expresión Génica , Humanos , Hiperplasia , Técnicas In Vitro , Hígado/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Oncogenes/efectos de los fármacos , Farmacogenética/estadística & datos numéricos , Seguridad
14.
J Biotechnol ; 119(3): 219-44, 2005 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-16005536

RESUMEN

Successful drug discovery requires accurate decision making in order to advance the best candidates from initial lead identification to final approval. Chemogenomics, the use of genomic tools in pharmacology and toxicology, offers a promising enhancement to traditional methods of target identification/validation, lead identification, efficacy evaluation, and toxicity assessment. To realize the value of chemogenomics information, a contextual database is needed to relate the physiological outcomes induced by diverse compounds to the gene expression patterns measured in the same animals. Massively parallel gene expression characterization coupled with traditional assessments of drug candidates provides additional, important mechanistic information, and therefore a means to increase the accuracy of critical decisions. A large-scale chemogenomics database developed from in vivo treated rats provides the context and supporting data to enhance and accelerate accurate interpretation of mechanisms of toxicity and pharmacology of chemicals and drugs. To date, approximately 600 different compounds, including more than 400 FDA approved drugs, 60 drugs approved in Europe and Japan, 25 withdrawn drugs, and 100 toxicants, have been profiled in up to 7 different tissues of rats (representing over 3200 different drug-dose-time-tissue combinations). Accomplishing this task required evaluating and improving a number of in vivo and microarray protocols, including over 80 rigorous quality control steps. The utility of pairing clinical pathology assessments with gene expression data is illustrated using three anti-neoplastic drugs: carmustine, methotrexate, and thioguanine, which had similar effects on the blood compartment, but diverse effects on hepatotoxicity. We will demonstrate that gene expression events monitored in the liver can be used to predict pathological events occurring in that tissue as well as in hematopoietic tissues.


Asunto(s)
Biotecnología/métodos , Diseño de Fármacos , Industria Farmacéutica/métodos , 5-Aminolevulinato Sintetasa/biosíntesis , Animales , Antineoplásicos/farmacología , Antineoplásicos/toxicidad , Automatización , Conductos Biliares/patología , Carmustina/toxicidad , Biología Computacional , Bases de Datos como Asunto , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Expresión Génica , Humanos , Hiperplasia/etiología , Hígado/efectos de los fármacos , Masculino , Metotrexato/toxicidad , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Tamaño de los Órganos , Farmacología/métodos , ARN/química , ARN Complementario/metabolismo , Ratas , Ratas Sprague-Dawley , Reticulocitos/citología , Reticulocitos/metabolismo , Tioguanina/toxicidad , Factores de Tiempo , Distribución Tisular , Toxicología/métodos
15.
Endocrinology ; 143(8): 3044-59, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12130571

RESUMEN

The objective of the study was to determine the long-term effects of gestational and lactational exposure to diethylstilbestrol (DES; 0, 0.1, 1, and 10 microg/kg maternal body weight) on mouse testicular growth, epididymal sperm count, in vitro fertilizing ability, and testicular gene expression using cDNA microarrays and real-time PCR in mice on postnatal day (PND) 21, 105, and 315. In the high dose group there was a persistent decrease in the number of Sertoli cells, and sperm count was decreased on PND315 (P < 0.05). Sperm motion was unaffected; however, the in vitro fertilizing ability of epididymal sperm was decreased in the high dose group on both PND105 (P < 0.001) and PND315 (P < 0.05). Early and latent alterations in the expression of genes involved in estrogen signaling (estrogen receptor alpha), steroidogenesis (steroidogenic factor 1, 17alpha-hydroxylase/C17,20-lyase, P450 side chain cleavage, steroidogenic acute regulatory protein, and scavenger receptor class B1), lysosomal function (LGP85 and prosaposin), and regulation of testicular development (testicular receptor 2, inhibin/activin beta C, and Hoxa10) were confirmed by real-time PCR. The results demonstrate that early exposure to DES causes long-term adverse effects on testicular development and sperm function, and these effects are associated with changes in testicular gene expression, even long after the cessation of DES exposure.


Asunto(s)
Dietilestilbestrol/toxicidad , Fertilización In Vitro , Feto/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal , Espermatozoides/efectos de los fármacos , Testículo/efectos de los fármacos , Animales , Femenino , Expresión Génica/efectos de los fármacos , Lactancia , Masculino , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Embarazo , Testículo/metabolismo
16.
Toxicol Lett ; 133(2-3): 181-91, 2002 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-12119126

RESUMEN

The objective of the study was to determine the effect of in utero and lactational exposure to genistein (0, 0.1, 0.5, 2.5 and 10 mg/kg/day) on mammary gland morphology in female B6D2F1 mice at levels comparable to or greater than human exposures. The effect of diethylstilbestrol (DES; 0, 0.1, 1, 10 microg/kg/day) on the mammary gland was also examined as a positive estrogenic control. Pregnant females were treated by daily gavage from gestational day 12 to postnatal day (PND) 20. Female offspring were weaned on PND21 and mammary gland whole mounts were examined for growth (length and area of the epithelial tree), proliferation (number of terminal end buds (TEBs)), and differentiation (density of alveolar buds (ABs)) on PND49. The highest dose of DES induced a significant increase in mammary gland growth (P<0.05) and also decreased the number of TEBs (P<0.06). The density of ABs was not significantly affected by DES. By contrast to DES, genistein had no effect on mammary gland morphology at any dose. These results suggest that in utero and lactational exposure to genistein at levels comparable to or greater than human exposures do not adversely affect mammary gland development in pubertal female B6D2F1 mice.


Asunto(s)
Anticarcinógenos/farmacología , Genisteína/farmacología , Lactancia/fisiología , Glándulas Mamarias Animales/crecimiento & desarrollo , Efectos Tardíos de la Exposición Prenatal , Maduración Sexual/fisiología , Animales , Peso Corporal/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Dieta , Femenino , Crecimiento/efectos de los fármacos , Glándulas Mamarias Animales/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Embarazo
17.
Toxicol Sci ; 124(1): 54-74, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21813463

RESUMEN

Evaluating the risk of chemical carcinogenesis has long been a challenge owing to the protracted nature of the pathology and the limited translatability of animal models. Although numerous short-term in vitro and in vivo assays have been developed, they have failed to reliably predict the carcinogenicity of nongenotoxic compounds. Extending upon previous microarray work (Fielden, M. R., Nie, A., McMillian, M., Elangbam, C. S., Trela, B. A., Yang, Y., Dunn, R. T., II, Dragan, Y., Fransson-Stehen, R., Bogdanffy, M., et al. (2008). Interlaboratory evaluation of genomic signatures for predicting carcinogenicity in the rat. Toxicol. Sci. 103, 28-34), we have developed and extensively evaluated a quantitative PCR-based signature to predict the potential for nongenotoxic compounds to induce liver tumors in the rat as a first step in the safety assessment of potential nongenotoxic carcinogens. The training set was derived from liver RNA from rats treated with 72 compounds and used to develop a 22-gene signature on the TaqMan array platform, providing an economical and standardized assay protocol. Independent testing on over 900 diverse samples (66 compounds) confirmed the interlaboratory precision of the assay and its ability to predict known nongenotoxic hepatocarcinogens (NGHCs). When tested under different experimental designs, strains, time points, dose setting criteria, and other preanalytical processes, the signature sensitivity and specificity was estimated to be 67% (95% confidence interval [CI] = 38-88%) and 59% (95% CI = 44-72%), respectively, with an area under the receiver operating characteristic curve of 0.65 (95% CI = 0.46-0.83%). Compounds were best classified using expression data from short-term repeat dose studies; however, the prognostic expression changes appeared to be preserved after longer term treatment. Exploratory evaluations also revealed that different modes of action for nongenotoxic and genotoxic compounds can be discriminated based on the expression of specific genes. These results support a potential early preclinical testing paradigm to catalyze broader understanding of putative NGHCs.


Asunto(s)
Carcinógenos/toxicidad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Hepáticas Experimentales/inducido químicamente , Hígado/efectos de los fármacos , Modelos Genéticos , Animales , Carcinógenos/clasificación , Marcadores Genéticos , Genómica , Hígado/metabolismo , Neoplasias Hepáticas Experimentales/genética , Masculino , Valor Predictivo de las Pruebas , Ratas , Ratas Sprague-Dawley
18.
Exp Toxicol Pathol ; 62(6): 607-13, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19781924

RESUMEN

A number of drugs and drug candidates, including fenfluramine and ergot derivatives, are associated with valvulopathy in humans; however, these responses are poorly predicted from animal studies. In vitro and in vivo evidence suggests that these compounds exert their pathological effect through activation of serotonin 2B receptor (5HT2BR) signaling. However, the variable effect of fenfluramine and other 5HT2BR agonists in rodents has cast doubt on the relevance of animal findings to predicting human risk. Herein, a candidate compound, RO3013, induced subendocardial cell proliferation in the mitral and tricuspid valves in rats after only 3 days of daily dosing. Additionally, there was a treatment-related increase in immunostaining of the proliferation marker Ki67, and phosphorylated Smad3 in the heart indicative of TGFß signaling co-localized with 5HT2BR expression. To substantiate the hypothesis that RO3013-induced valvular proliferation is secondary to 5HT2BR activation, the compound was evaluated in vitro and found to bind to the human 5HT2BR with a K(i) of 3.8µM; however, it was virtually devoid of agonist activity in a functional assay in human cells. By contrast, RO3013 bound to the rat 5HT2BR with a K(i) of 1.2µM and activated the receptor with an EC50 of 0.5µM. This agonist potency estimate is in good agreement with the free plasma concentrations of RO3013 at which valvular proliferation was observed. These results suggest that the rat may be susceptible to 5HT2BR-mediated valvular proliferation similar to humans; yet, the significant differences between binding and functional activities can be a possible explanation for the observed species-selective receptor responses.


Asunto(s)
Enfermedades de las Válvulas Cardíacas/inducido químicamente , Miocardio/patología , Receptor de Serotonina 5-HT2B/fisiología , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Humanos , Antígeno Ki-67/análisis , Masculino , Ratas , Ratas Wistar , Agonistas del Receptor de Serotonina 5-HT2/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/fisiología
19.
Expert Opin Drug Saf ; 7(2): 107-10, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18324874

RESUMEN

The cost impact of late-stage failures of drug candidates has motivated the pharmaceutical industry to develop, validate, and implement a more proactive testing paradigm, including an emphasis on conducting predictive in vitro and in vivo studies earlier. The goal of drug discovery toxicology is not to reduce or eliminate attrition, as is often mis-stated as such, but rather to reprioritize efforts to shift attrition of future failing molecules upstream in discovery. This shift in attrition requires additional studies and investment earlier in the candidate evaluation process in order to avoid spending resources on molecules with soon-to-be-discovered development-limiting liabilities. While in silico and in vitro models will continually be developed and refined, in vivo preclinical safety models remain the gold standard for assessing human risk. For in vivo testing to influence early discovery effectively, it must: i) require low amounts of compound; ii) provide rapid results to drive decision-making and medicinal chemistry efforts; and iii) be flexible and provide results relevant to the development plan tailored to each target, drug class, and/or indication.


Asunto(s)
Diseño de Fármacos , Drogas en Investigación/efectos adversos , Drogas en Investigación/toxicidad , Modelos Animales , Pruebas de Toxicidad , Animales , Aprobación de Drogas , Evaluación Preclínica de Medicamentos/métodos , Valor Predictivo de las Pruebas , Especificidad de la Especie , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA