Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Biol Chem ; 298(8): 102204, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35772495

RESUMEN

The protozoan parasite Trypanosoma cruzi is the causative agent of American trypanosomiasis, otherwise known as Chagas disease. To survive in the host, the T. cruzi parasite needs antioxidant defense systems. One of these is a hybrid heme peroxidase, the T. cruzi ascorbate peroxidase-cytochrome c peroxidase enzyme (TcAPx-CcP). TcAPx-CcP has high sequence identity to members of the class I peroxidase family, notably ascorbate peroxidase (APX) and cytochrome c peroxidase (CcP), as well as a mitochondrial peroxidase from Leishmania major (LmP). The aim of this work was to solve the structure and examine the reactivity of the TcAPx-CcP enzyme. Low temperature electron paramagnetic resonance spectra support the formation of an exchange-coupled [Fe(IV)=O Trp233•+] compound I radical species, analogous to that used in CcP and LmP. We demonstrate that TcAPx-CcP is similar in overall structure to APX and CcP, but there are differences in the substrate-binding regions. Furthermore, the electron transfer pathway from cytochrome c to the heme in CcP and LmP is preserved in the TcAPx-CcP structure. Integration of steady state kinetic experiments, molecular dynamic simulations, and bioinformatic analyses indicates that TcAPx-CcP preferentially oxidizes cytochrome c but is still competent for oxidization of ascorbate. The results reveal that TcAPx-CcP is a credible cytochrome c peroxidase, which can also bind and use ascorbate in host cells, where concentrations are in the millimolar range. Thus, kinetically and functionally TcAPx-CcP can be considered a hybrid peroxidase.


Asunto(s)
Citocromo-c Peroxidasa , Trypanosoma cruzi , Antioxidantes , Ascorbato Peroxidasas/genética , Ascorbato Peroxidasas/metabolismo , Ácido Ascórbico/metabolismo , Enfermedad de Chagas/parasitología , Citocromo-c Peroxidasa/química , Citocromo-c Peroxidasa/genética , Citocromo-c Peroxidasa/metabolismo , Citocromos c/metabolismo , Hemo/metabolismo , Humanos , Peroxidasa/metabolismo , Peroxidasas/metabolismo , Especificidad por Sustrato , Trypanosoma cruzi/enzimología , Trypanosoma cruzi/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(40): 19911-19916, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31527239

RESUMEN

The circadian clock is an endogenous time-keeping system that is ubiquitous in animals and plants as well as some bacteria. In mammals, the clock regulates the sleep-wake cycle via 2 basic helix-loop-helix PER-ARNT-SIM (bHLH-PAS) domain proteins-CLOCK and BMAL1. There is emerging evidence to suggest that heme affects circadian control, through binding of heme to various circadian proteins, but the mechanisms of regulation are largely unknown. In this work we examine the interaction of heme with human CLOCK (hCLOCK). We present a crystal structure for the PAS-A domain of hCLOCK, and we examine heme binding to the PAS-A and PAS-B domains. UV-visible and electron paramagnetic resonance spectroscopies are consistent with a bis-histidine ligated heme species in solution in the oxidized (ferric) PAS-A protein, and by mutagenesis we identify His144 as a ligand to the heme. There is evidence for flexibility in the heme pocket, which may give rise to an additional Cys axial ligand at 20K (His/Cys coordination). Using DNA binding assays, we demonstrate that heme disrupts binding of CLOCK to its E-box DNA target. Evidence is presented for a conformationally mobile protein framework, which is linked to changes in heme ligation and which has the capacity to affect binding to the E-box. Within the hCLOCK structural framework, this would provide a mechanism for heme-dependent transcriptional regulation.


Asunto(s)
Proteínas CLOCK/química , Elementos E-Box , Hemo/química , Transducción de Señal , Factores de Transcripción ARNTL/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Catálisis , Relojes Circadianos , Criptocromos/química , ADN/química , Electrones , Escherichia coli/metabolismo , Humanos , Ligandos , Proteínas del Tejido Nervioso/química , Oxígeno/química , Proteínas Circadianas Period/química , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Transcripción Genética
3.
Chemistry ; 27(11): 3875-3886, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32852862

RESUMEN

Na2 Ti3 O7 (NTO) is considered a promising anode material for Na-ion batteries due to its layered structure with an open framework and low and safe average operating voltage of 0.3 V vs. Na+ /Na. However, its poor electronic conductivity needs to be addressed to make this material attractive for practical applications among other anode choices. Here, we report a safe, controllable and affordable method using urea that significantly improves the rate performance of NTO by producing surface defects such as oxygen vacancies and hydroxyl groups, and the secondary phase Na2 Ti6 O13 . The enhanced electrochemical performance agrees with the higher Na+ ion diffusion coefficient, higher charge carrier density and reduced bandgap observed in these samples, without the need of nanosizing and/or complex synthetic strategies. A comprehensive study using a combination of diffraction, microscopic, spectroscopic and electrochemical techniques supported by computational studies based on DFT calculations, was carried out to understand the effects of this treatment on the surface, chemistry and electronic and charge storage properties of NTO. This study underscores the benefits of using urea as a strategy for enhancing the charge storage properties of NTO and thus, unfolding the potential of this material in practical energy storage applications.

4.
Appl Magn Reson ; 52(8): 959-970, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34776648

RESUMEN

Structural investigations of proteins and their biological complexes are now frequently complemented by distance constraints between spin labeled cysteines generated using double electron-electron resonance (DEER) spectroscopy, via site directed spin labeling (SDSL). Methanethiosulfonate spin label (MTSSL), has become ubiquitous in the SDSL of proteins, however, has limitations owing to its high number of rotamers, and reducibility. In this article we introduce the use of bromoacrylaldehyde spin label (BASL) as a cysteine spin label, demonstrating an advantage over MTSSL due to its increased selectivity for surface cysteines, eliminating the need to 'knock out' superfluous cysteine residues. Applied to the multidomain protein, His domain protein tyrosine phosphatase (HD-PTP), we show that BASL can be easily added in excess with selective labeling, whereas MTSSL causes protein precipitation. Furthermore, using DEER, we were able to measure a single cysteine pair distance in a three cysteine domain within HD-PTP. The label has a further advantage of comprising a sulfide in a three-bond tether, making it a candidate for protein binding and in-cell studies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00723-021-01350-1.

5.
Angew Chem Int Ed Engl ; 60(26): 14578-14585, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-33826799

RESUMEN

Oxygen activation in all heme enzymes requires the formation of high oxidation states of iron, usually referred to as ferryl heme. There are two known intermediates: Compound I and Compound II. The nature of the ferryl heme-and whether it is an FeIV =O or FeIV -OH species-is important for controlling reactivity across groups of heme enzymes. The most recent evidence for Compound I indicates that the ferryl heme is an unprotonated FeIV =O species. For Compound II, the nature of the ferryl heme is not unambiguously established. Here, we report 1.06 Šand 1.50 Šcrystal structures for Compound II intermediates in cytochrome c peroxidase (CcP) and ascorbate peroxidase (APX), collected using the X-ray free electron laser at SACLA. The structures reveal differences between the two peroxidases. The iron-oxygen bond length in CcP (1.76 Å) is notably shorter than in APX (1.87 Å). The results indicate that the ferryl species is finely tuned across Compound I and Compound II species in closely related peroxidase enzymes. We propose that this fine-tuning is linked to the functional need for proton delivery to the heme.


Asunto(s)
Rayos Láser , Peroxidasas/química , Cristalografía por Rayos X , Modelos Moleculares , Peroxidasas/metabolismo
6.
J Am Chem Soc ; 142(37): 15941-15949, 2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32820906

RESUMEN

The synthesis, structures, and properties of [4]- and [3]-rotaxane complexes are reported where [2]-rotaxanes, formed from heterometallic {Cr7Ni} rings, are bound to a fluoride-centered {CrNi2} triangle. The compounds have been characterized by single-crystal X-ray diffraction and have the formulas [CrNi2(F)(O2CtBu)6]{(BH)[Cr7NiF8(O2CtBu)16]}3 (3) and [CrNi2(F)(O2CtBu)6(THF)]{(BH)[Cr7NiF8(O2CtBu)16]}2 (4), where B = py-CH2CH2NHCH2C6H4SCH3. The [4]-rotaxane 3 is an isosceles triangle of three [2]-rotaxanes bound to the central triangle while the [3]-rotaxane 4 contains only two [2]-rotaxanes bound to the central triangle. Studies of the behavior of 3 and 4 in solution by small-angle X-ray scattering and atomistic molecular dynamic simulations show that the structure of 3 is similar to that found in the crystal but that 4 has a different conformation to the crystal. Continuous wave and pulsed electron paramagnetic resonance spectroscopy was used to study the structures present and demonstrate that in frozen solutions (at 5 K) 4 forms more extended molecules than 3 and with a wider range of conformations.

7.
J Am Chem Soc ; 141(37): 14633-14642, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31411874

RESUMEN

We report a family of hybrid [2]rotaxanes based on inorganic [Cr7NiF8(O2CtBu)16]- ("{Cr7Ni}") rings templated about organic threads that are terminated at one end with pyridyl groups. These rotaxanes can be coordinated to [Cu(hfac)2] (where Hhfac = 1,1,1,5,5,5-hexafluoroacetylacetone), to give 1:1 or 1:2 Cu:{Cr7Ni} adducts: {[Cu(hfac)2](py-CH2NH2CH2CH2Ph)[Cr7NiF8(O2CtBu)16]}, {[Cu(hfac)2][py-CH2NH2CH2CH3][Cr7NiF8(O2CtBu)16]}, {[Cu(hfac)2]([py-CH2CH2NH2CH2C6H4SCH3][Cr7NiF8(O2CtBu)16])2}, {[Cu(hfac)2]([py-C6H4-CH2NH2(CH2)4Ph][Cr7NiF8(O2CtBu)16])2}, and {[Cu(hfac)2]([3-py-CH2CH2NH2(CH2)3SCH3][Cr7NiF8(O2CtBu)16])2}, the structures of which have been determined by X-ray diffraction. The {Cr7Ni} rings and CuII ions both have electronic spin S = 1/2, but with very different g-values. Continuous-wave EPR spectroscopy reveals the exchange interactions between these dissimilar spins, and hence the communication between the different molecular components that comprise these supramolecular systems. The interactions are weak such that we observe AX or AX2 type spectra. The connectivity between the {Cr7Ni} ring and thread terminus is varied such that the magnitude of the exchange interaction J can be tuned. The coupling is shown to be dominated by through-bond rather than through-space mechanisms.

8.
J Am Chem Soc ; 139(10): 3619-3622, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28240898

RESUMEN

The structure-directing role of the inorganic secondary building unit (SBU) is key for determining the topology of metal-organic frameworks (MOFs). Here we show that organic building units relying on strong π interactions that are energetically competitive with the formation of common inorganic SBUs can also play a role in defining the topology. We demonstrate the importance of the organic SBU in the formation of Mg2H6(H3O)(TTFTB)3 (MIT-25), a mesoporous MOF with the new ssp topology. A delocalized electronic hole is critical in the stabilization of the TTF triad organic SBUs and exemplifies a design principle for future MOF synthesis.

9.
Chemistry ; 23(28): 6811-6828, 2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-28261884

RESUMEN

Antimalarials can interact with heme covalently, by π⋅⋅⋅π interactions or by hydrogen bonding. Consequently, the prototropy of 4-aminoquinolines and quinoline methanols was investigated by using quantum mechanics. Calculations showed mefloquine protonated preferentially at the piperidine and was impeded at the endocyclic nitrogen because of electronic rather than steric factors. In gas-phase calculations, 7-substituted mono- and bis-4-aminoquinolines were preferentially protonated at the endocyclic quinoline nitrogen. By contrast, compounds with a trifluoromethyl substituent on both the 2- and 8-positions, reversed the order of protonation, which now favored the exocyclic secondary amine nitrogen at the 4-position. Loss of antimalarial efficacy by CF3 groups simultaneously occupying the 2- and 8-positions was recovered if the CF3 group occupied the 7-position. Hence, trifluoromethyl groups buttressing the quinolinyl nitrogen shifted binding of antimalarials to hematin, enabling switching from endocyclic to the exocyclic N. Both theoretical calculations (DFT calculations: B3LYP/BS1) and crystal structure of (±)-trans-N1 ,N2 -bis-(2,8-ditrifluoromethylquinolin-4-yl)cyclohexane-1,2-diamine were used to reveal the preferred mode(s) of interaction with hematin. The order of antimalarial activity in vivo followed the capacity for a redox change of the iron(III) state, which has important implications for the future rational design of 4-aminoquinoline antimalarials.


Asunto(s)
Antimaláricos/química , Quinolinas/química , Aminoquinolinas/química , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Cristalografía por Rayos X , Diseño de Fármacos , Espectroscopía de Resonancia por Spin del Electrón , Compuestos Férricos/química , Halogenación , Hemina/química , Hemina/metabolismo , Enlace de Hidrógeno , Isomerismo , Locomoción/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Malaria/tratamiento farmacológico , Malaria/parasitología , Malaria/patología , Ratones , Conformación Molecular , Oxidación-Reducción , Plasmodium berghei/efectos de los fármacos , Plasmodium berghei/patogenicidad , Quinolinas/farmacología , Quinolinas/uso terapéutico , Termodinámica
10.
Nano Lett ; 16(10): 6343-6348, 2016 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-27624349

RESUMEN

The nanoscale design of quantum dots (QDs) requires advanced analytical techniques. However, those that are commonly used do not have sufficient sensitivity or spatial resolution. Here, we use magnetic resonance techniques combined with paramagnetic Mn impurities in PbS QDs for sensitive probing of the QD surface and environment. In particular, we reveal inequivalent proton spin relaxations of the capping ligands and solvent molecules, strengths and anisotropies of the Mn nuclear spin interactions, and Mn nuclei distances with ∼1 Šsensitivity. These findings demonstrate the potential of magnetically doped QDs as sensitive magnetic nanoprobes and the use of electron spins for surface sensing.

11.
Angew Chem Int Ed Engl ; 56(32): 9449-9453, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28570782

RESUMEN

In situ monitoring of biomolecular recognition, especially at surfaces, still presents a significant technical challenge. Electron paramagnetic resonance (EPR) of biomolecules spin-labeled with nitroxides can offer uniquely sensitive and selective insights into these processes, but new spin-labeling strategies are needed. The synthesis and study of a bromoacrylaldehyde spin label (BASL), which features two attachment points with orthogonal reactivity is reported. The first examples of mannose and biotin ligands coupled to aqueous carboxy-functionalized gold nanoparticles through a spin label are presented. EPR spectra were obtained for the spin-labeled ligands both free in solution and attached to nanoparticles. The labels were recognized by the mannose-binding lectin, Con A, and the biotin-binding protein avidin-peroxidase. Binding gave quantifiable changes in the EPR spectra from which binding profiles could be obtained that reflect the strength of binding in each case.

12.
Angew Chem Int Ed Engl ; 56(14): 3876-3879, 2017 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-28276620

RESUMEN

Use of molecular electron spins as qubits for quantum computing will depend on the ability to produce molecules with weak but measurable interactions between the qubits. Here we demonstrate use of pulsed EPR spectroscopy to measure the interaction between two inequivalent spins in a hybrid rotaxane molecule.

13.
Theor Chem Acc ; 135: 97, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27069413

RESUMEN

A quantum mechanical (QM) method rooted on density functional theory (DFT) has been employed to determine conformations of the methane-thiosulfonate spin label (MTSL) attached to a fragment extracted from the activation loop of Aurora-A kinase. The features of the calculated energy surface revealed low energy barriers between isoenergetic minima, and the system could be described in a population of 76 rotamers that can be also considered for other systems since it was found that the [Formula: see text], [Formula: see text] and [Formula: see text] do not depend on the previous two dihedral angles. Conformational states obtained were seen to be comparable to those obtained in the α-helix systems studied previously, indicating that the protein backbone does not affect the torsional profiles significantly and suggesting the possibility to use determined conformations for other protein systems for further modelling studies.

14.
Angew Chem Int Ed Engl ; 54(31): 8997-9000, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26087676

RESUMEN

The flavoenzyme monoamine oxidase (MAO) regulates mammalian behavioral patterns by modulating neurotransmitters such as adrenaline and serotonin. The mechanistic basis which underpins this enzyme is far from agreed upon. Reported herein is that the combination of a synthetic flavin and alloxan generates a catalyst system which facilitates biomimetic amine oxidation. Mechanistic and electron paramagnetic (EPR) spectroscopic data supports the conclusion that the reaction proceeds through a radical manifold. This data provides the first example of a biorelevant synthetic model for monoamine oxidase B activity.


Asunto(s)
Aminas/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , Monoaminooxidasa/química , Catálisis , Estructura Molecular , Monoaminooxidasa/metabolismo , Oxidación-Reducción
15.
Biochim Biophys Acta ; 1831(9): 1449-57, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23797010

RESUMEN

In plants and mammals, oxylipins may be synthesized via multi step processes that consist of dioxygenation and isomerization of the intermediately formed hydroperoxy fatty acid. These processes are typically catalyzed by two distinct enzyme classes: dioxygenases and cytochrome P450 enzymes. In ascomycetes biosynthesis of oxylipins may proceed by a similar two-step pathway. An important difference, however, is that both enzymatic activities may be combined in a single bifunctional enzyme. These types of enzymes are named Psi-factor producing oxygenases (Ppo). Here, the spatial organization of the two domains of PpoA from Aspergillus nidulans was analyzed by small-angle X-ray scattering and the obtained data show that the enzyme exhibits a relatively flat trimeric shape. Atomic structures of the single domains were obtained by template-based structure prediction and docked into the enzyme envelope of the low resolution structure obtained by SAXS. EPR-based distance measurements between the tyrosyl radicals formed in the activated dioxygenase domain of the enzyme supported the trimeric structure obtained from SAXS and the previous assignment of Tyr374 as radical-site in PpoA. Furthermore, two phenylalanine residues in the cytochrome P450 domain were shown to modulate the specificity of hydroperoxy fatty acid rearrangement.


Asunto(s)
Aspergillus nidulans/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Dioxigenasas/química , Dioxigenasas/metabolismo , Dispersión del Ángulo Pequeño , Catálisis , Electrones , Mutagénesis Sitio-Dirigida , Unión Proteica , Estructura Cuaternaria de Proteína , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Especificidad por Sustrato , Espectrometría de Masas en Tándem
16.
Molecules ; 19(10): 16998-7025, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25342554

RESUMEN

Spin labelling is a chemical technique that enables the integration of a molecule containing an unpaired electron into another framework for study. Given the need to understand the structure, dynamics, and conformational changes of biomacromolecules, spin labelling provides a relatively non-intrusive technique and has certain advantages over X-ray crystallography; which requires high quality crystals. The technique relies on the design of binding probes that target a functional group, for example, the thiol group of a cysteine residue within a protein. The unpaired electron is typically supplied through a nitroxide radical and sterically shielded to preserve stability. Pulsed electron paramagnetic resonance (EPR) techniques allow small magnetic couplings to be measured (e.g., <50 MHz) providing information on single label probes or the dipolar coupling between multiple labels. In particular, distances between spin labels pairs can be derived which has led to many protein/enzymes and nucleotides being studied. Here, we summarise recent examples of spin labels used for pulse EPR that serve to illustrate the contribution of chemistry to advancing discoveries in this field.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón , Sustancias Macromoleculares/química , Marcadores de Spin , Animales , Humanos
17.
Heliyon ; 10(1): e23335, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38332887

RESUMEN

Ceiba pentandra (L.) Gaertn. (Bombacaceae) is popular for the quality of its wood. However, its leaf, stem bark and root bark have been popular in ethnomedicine and, apart from the inflorescence, have been subject of extensive phytochemical investigations. In this study, two compounds were isolated from the crude methanol extract of the inflorescence. Through data from UV, NMR, MS, electrochemical studies, differential scanning calorimetry, and thermogravimetric analysis, the structures were elucidated as 3-C-ß-d-glucopyranosyl-1,3,6,7-tetrahydroxyxanthone (1) and 2-C-ß-d-glucopyranosyl-1,3,6,7-tetrahydroxyxanthone (mangiferin, 2). They were assessed for antioxidant efficacy (DCFDA assay) and for anti-inflammatory efficacy using the lipopolysaccharide (LPS)-induced inflammation model in the RAW 264.7 macrophages (nitrite levels quantified, using Griess Assay, as surrogate for nitric oxide (NO)). Compound 1 (named ceibinin) was established as a novel positional isomer of mangiferin (2). While both 1 and 2 were antioxidant against basal and hydrogen peroxide (100 µM)-induced oxidative stress (6.25 µg/ml abrogated peroxide-induced oxidative stress), ceibinin (1) demonstrated no anti-inflammatory potential, unlike mangiferin (2) which, as previously reported, showed anti-inflammatory effect. Our work reports a positional isomer of mangiferin for the first time in C. pentandra and demonstrates how such isomerism could underlie differences in biological activities and thus the potential for development into therapeutics.

18.
Nat Commun ; 15(1): 3013, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589362

RESUMEN

Hard carbon is a promising negative electrode material for rechargeable sodium-ion batteries due to the ready availability of their precursors and high reversible charge storage. The reaction mechanisms that drive the sodiation properties in hard carbons and subsequent electrochemical performance are strictly linked to the characteristic slope and plateau regions observed in the voltage profile of these materials. This work shows that electron paramagnetic resonance (EPR) spectroscopy is a powerful and fast diagnostic tool to predict the extent of the charge stored in the slope and plateau regions during galvanostatic tests in hard carbon materials. EPR lineshape simulation and temperature-dependent measurements help to separate the nature of the spins in mechanochemically modified hard carbon materials synthesised at different temperatures. This proves relationships between structure modification and electrochemical signatures in the galvanostatic curves to obtain information on their sodium storage mechanism. Furthermore, through ex situ EPR studies we study the evolution of these EPR signals at different states of charge to further elucidate the storage mechanisms in these carbons. Finally, we discuss the interrelationship between EPR spectroscopy data of the hard carbon samples studied and their corresponding charging storage mechanism.

19.
J Am Chem Soc ; 135(10): 3855-64, 2013 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-23402437

RESUMEN

Ensemble-based measurements of kinetic isotope effects (KIEs) have advanced physical understanding of enzyme-catalyzed reactions, but controversies remain. KIEs are used as reporters of rate-limiting H-transfer steps, quantum mechanical tunnelling, dynamics and multiple reactive states. Single molecule (SM) enzymatic KIEs could provide new information on the physical basis of enzyme catalysis. Here, single pair fluorescence energy transfer (spFRET) was used to measure SM enzymatic KIEs on the H-transfer catalyzed by the enzyme pentaerythritol tetranitrate reductase. We evaluated a range of methods for extracting the SM KIE from single molecule spFRET time traces. The SM KIE enabled separation of contributions from nonenzymatic protein and fluorophore processes and H-transfer reactions. Our work demonstrates SM KIE analysis as a new method for deconvolving reaction chemistry from intrinsic dynamics.


Asunto(s)
Oxidorreductasas/metabolismo , Teoría Cuántica , Biocatálisis , Transferencia Resonante de Energía de Fluorescencia , Cinética , Modelos Moleculares , Estructura Molecular
20.
J Biol Inorg Chem ; 18(8): 905-15, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24037219

RESUMEN

Heterodisulfide reductase (Hdr) is a key enzyme in the energy metabolism of methanogenic archaea. The enzyme catalyzes the reversible reduction of the heterodisulfide (CoM-S-S-CoB) to the thiol coenzymes M (CoM-SH) and B (CoB-SH). Cleavage of CoM-S-S-CoB at an unusual FeS cluster reveals unique substrate chemistry. The cluster is fixed by cysteines of two cysteine-rich CCG domain sequence motifs (CX31-39CCX35-36CXXC) of subunit HdrB of the Methanothermobacter marburgensis HdrABC complex. We report on Q-band (34 GHz) (57)Fe electron-nuclear double resonance (ENDOR) spectroscopic measurements on the oxidized form of the cluster found in HdrABC and in two other CCG-domain-containing proteins, recombinant HdrB of Hdr from M. marburgensis and recombinant SdhE of succinate: quinone reductase from Sulfolobus solfataricus P2. The spectra at 34 GHz show clearly improved resolution arising from the absence of proton resonances and polarization effects. Systematic spectral simulations of 34 GHz data combined with previous 9 GHz data allowed the unambiguous assignment of four (57)Fe hyperfine couplings to the cluster in all three proteins. (13)C Mims ENDOR spectra of labelled CoM-SH were consistent with the attachment of the substrate to the cluster in HdrABC, whereas in the other two proteins no substrate is present. (57)Fe resonances in all three systems revealed unusually large (57)Fe ENDOR hyperfine splitting as compared to known systems. The results infer that the cluster's unique magnetic properties arise from the CCG binding motif.


Asunto(s)
Proteínas Hierro-Azufre/metabolismo , Methanobacteriaceae/enzimología , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Oxidorreductasas/metabolismo , Ácido Succínico/metabolismo , Sulfolobus solfataricus/enzimología , Secuencia de Aminoácidos , Espectroscopía de Resonancia por Spin del Electrón , Proteínas Hierro-Azufre/química , Methanobacteriaceae/química , Methanobacteriaceae/metabolismo , Datos de Secuencia Molecular , NAD(P)H Deshidrogenasa (Quinona)/química , Oxidorreductasas/química , Unión Proteica , Estructura Terciaria de Proteína , Sulfolobus solfataricus/química , Sulfolobus solfataricus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA