Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Diabetologia ; 66(2): 354-366, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36280617

RESUMEN

AIMS/HYPOTHESIS: Endoplasmic reticulum (ER) stress and beta cell dedifferentiation both play leading roles in impaired insulin secretion in overt type 2 diabetes. Whether and how these factors are related in the natural history of the disease remains, however, unclear. METHODS: In this study, we analysed pancreas biopsies from a cohort of metabolically characterised living donors to identify defects in in situ insulin synthesis and intra-islet expression of ER stress and beta cell phenotype markers. RESULTS: We provide evidence that in situ altered insulin processing is closely connected to in vivo worsening of beta cell function. Further, activation of ER stress genes reflects the alteration of insulin processing in situ. Using a combination of 17 different markers, we characterised individual pancreatic islets from normal glucose tolerant, impaired glucose tolerant and type 2 diabetic participants and reconstructed disease progression. CONCLUSIONS/INTERPRETATION: Our study suggests that increased beta cell workload is accompanied by a progressive increase in ER stress with defects in insulin synthesis and loss of beta cell identity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Humanos , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Estrés del Retículo Endoplásmico/genética , Glucosa/metabolismo
2.
Diabetes Metab Res Rev ; 39(8): e3696, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37466955

RESUMEN

AIMS: Angiotensin I-converting enzyme type 2 (ACE2), a pivotal SARS-CoV-2 receptor, has been shown to be expressed in multiple cells, including human pancreatic beta-cells. A putative bidirectional relationship between SARS-CoV-2 infection and diabetes has been suggested, confirming the hypothesis that viral infection in beta-cells may lead to new-onset diabetes or worse glycometabolic control in diabetic patients. However, whether ACE2 expression levels are altered in beta-cells of diabetic patients has not yet been investigated. Here, we aimed to elucidate the in situ expression pattern of ACE2 in Type 2 diabetes (T2D) with respect to non-diabetic donors which may account for a higher susceptibility to SARS-CoV-2 infection in beta-cells. MATERIAL AND METHODS: Angiotensin I-converting enzyme type 2 immunofluorescence analysis using two antibodies alongside insulin staining was performed on formalin-fixed paraffin embedded pancreatic sections obtained from n = 20 T2D and n = 20 non-diabetic (ND) multiorgan donors. Intensity and colocalisation analyses were performed on a total of 1082 pancreatic islets. Macrophage detection was performed using anti-CD68 immunohistochemistry on serial sections from the same donors. RESULTS: Using two different antibodies, ACE2 expression was confirmed in beta-cells and in pancreas microvasculature. Angiotensin I-converting enzyme type 2 expression was increased in pancreatic islets of T2D donors in comparison to ND controls alongside with a higher colocalisation rate between ACE2 and insulin using both anti-ACE2 antibodies. CD68+ cells tended to be increased in T2D pancreata, in line with higher ACE2 expression observed in serial sections. CONCLUSIONS: Higher ACE2 expression in T2D islets might increase their susceptibility to SARS-CoV-2 infection during COVID-19 in T2D patients, thus worsening glycometabolic outcomes and disease severity.


Asunto(s)
COVID-19 , Diabetes Mellitus Tipo 2 , Islotes Pancreáticos , Humanos , Enzima Convertidora de Angiotensina 2 , COVID-19/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Peptidil-Dipeptidasa A
3.
Diabetologia ; 64(12): 2731-2740, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34522983

RESUMEN

AIMS/HYPOTHESIS: We report the case of a woman who underwent a partial pancreatectomy for a serous cystadenoma when aged 56 years. She had been diagnosed with diabetes 6 years before and had Hashimoto's thyroiditis. Despite positive anti-GAD autoantibodies (GADA) and previous surgery, she was transiently weaned off long-acting insulin. Blood glucose levels remained well controlled with low-dose long-acting insulin. Insulin needs eventually increased 8 years after surgery, in conjunction with anti-zinc transporter 8 (ZnT8) seroconversion and decreasing residual C-peptide. We hypothesised that the surgical pancreas specimens and blood autoimmune T cell responses may provide correlates of this indolent clinical course. METHODS: Beta and alpha cell area and insulitis were quantified on pancreas head tissue sections obtained at surgery. Blood T cell responses against beta cell antigens were analysed by enzyme-linked immunospot. RESULTS: Pancreas sections displayed reduced beta cell and normal alpha cell area (0.27% and 0.85% of section area, respectively). High-grade insulitis was observed, mostly in insulin-containing islets, with a peri-insulitis pattern enriched in T cells positive for regulatory forkhead box protein 3 (FOXP3). In vitro challenge with beta cell antigens of circulating T cells collected 4 and 9 years after surgery revealed dominant and persistent IL-10 responses; IFN-γ responses increasing at 9 years, after anti-ZnT8 seroconversion, was observed. CONCLUSIONS/INTERPRETATION: Despite persistent GADA and the histopathological finding of insulitis and decreased beta cell area 6 years after diabetes diagnosis, glycaemic control was maintained with low-dose insulin up to 8 years after surgery. Regulated T cell responses towards beta cell antigens and FOXP3-positive peri-insulitis suggest spontaneous long-term regulation of islet autoimmunity after substantial beta cell loss, and eventual autoimmune progression upon anti-ZnT8 seroconversion.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Autoanticuerpos/metabolismo , Femenino , Humanos , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Persona de Mediana Edad , Páncreas/metabolismo , Pancreaticoduodenectomía
4.
Int J Mol Sci ; 22(2)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466949

RESUMEN

Diabetes mellitus is a group of heterogeneous metabolic disorders characterized by chronic hyperglycaemia mainly due to pancreatic ß cell death and/or dysfunction, caused by several types of stress such as glucotoxicity, lipotoxicity and inflammation. Different patho-physiological mechanisms driving ß cell response to these stresses are tightly regulated by microRNAs (miRNAs), a class of negative regulators of gene expression, involved in pathogenic mechanisms occurring in diabetes and in its complications. In this review, we aim to shed light on the most important miRNAs regulating the maintenance and the robustness of ß cell identity, as well as on those miRNAs involved in the pathogenesis of the two main forms of diabetes mellitus, i.e., type 1 and type 2 diabetes. Additionally, we acknowledge that the understanding of miRNAs-regulated molecular mechanisms is fundamental in order to develop specific and effective strategies based on miRNAs as therapeutic targets, employing innovative molecules.


Asunto(s)
Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Regulación de la Expresión Génica , Células Secretoras de Insulina/metabolismo , MicroARNs/genética , Animales , Humanos , Hiperglucemia/genética , Hiperglucemia/metabolismo , Secreción de Insulina/genética , Células Secretoras de Insulina/citología , Fenotipo
5.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34299336

RESUMEN

The rising prevalence of metabolic diseases related to insulin resistance (IR) have stressed the urgent need of accurate and applicable tools for early diagnosis and treatment. In the last decade, non-coding RNAs (ncRNAs) have gained growing interest because of their potential role in IR modulation. NcRNAs are variable-length transcripts which are not translated into proteins but are involved in gene expression regulation. Thanks to their stability and easy detection in biological fluids, ncRNAs have been investigated as promising diagnostic and therapeutic markers in metabolic diseases, such as type 2 diabetes mellitus (T2D), obesity and non-alcoholic fatty liver disease (NAFLD). Here we review the emerging role of ncRNAs in the development of IR and related diseases such as obesity, T2D and NAFLD, and summarize current evidence concerning their potential clinical application.


Asunto(s)
Resistencia a la Insulina/genética , ARN no Traducido/genética , Animales , Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Insulina/metabolismo , Hígado/metabolismo , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/genética , Obesidad/metabolismo , ARN no Traducido/metabolismo
6.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34502360

RESUMEN

Type 2 diabetes (T2D) represents one of the major health issues of this century. Despite the availability of an increasing number of anti-hyperglycemic drugs, a significant proportion of patients are inadequately controlled, thus highlighting the need for novel biomarkers to guide treatment selection. MicroRNAs (miRNAs) are small non-coding RNAs, proposed as useful diagnostic/prognostic markers. The aim of our study was to identify a miRNA signature occurring in responders to glucagon-like peptide 1 receptor agonists (GLP1-RA) therapy. We investigated the expression profile of eight T2D-associated circulating miRNAs in 26 prospectively evaluated diabetic patients in whom GLP1-RA was added to metformin. As expected, GLP1-RA treatment induced significant reductions of HbA1c and body weight, both after 6 and 12 months of therapy. Of note, baseline expression levels of the selected miRNAs revealed two distinct patient clusters: "high expressing" and "low expressing". Interestingly, a significantly higher percentage of patients in the high expression group reached the glycemic target after 12 months of treatment. Our findings suggest that the evaluation of miRNA expression could be used to predict the likelihood of an early treatment response to GLP1-RA and to select patients in whom to start such treatment, paving the way to a personalized medicine approach.


Asunto(s)
MicroARN Circulante/análisis , MicroARN Circulante/genética , Diabetes Mellitus Tipo 2/genética , Adulto , Biomarcadores Farmacológicos/sangre , Glucemia/análisis , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Glucosa/metabolismo , Humanos , Hipoglucemiantes/farmacología , Masculino , MicroARNs/sangre , MicroARNs/genética , Persona de Mediana Edad , Proyectos Piloto , Transcriptoma/genética
7.
Cell Rep Med ; 5(6): 101591, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38838677

RESUMEN

Circulating microRNAs (miRNAs) are linked to the onset and progression of type 1 diabetes mellitus (T1DM), thus representing potential disease biomarkers. In this study, we employed a multiplatform sequencing approach to analyze circulating miRNAs in an extended cohort of prospectively evaluated recent-onset T1DM individuals from the INNODIA consortium. Our findings reveal that a set of miRNAs located within T1DM susceptibility chromosomal locus 14q32 distinguishes two subgroups of individuals. To validate our results, we conducted additional analyses on a second cohort of T1DM individuals, confirming the identification of these subgroups, which we have named cluster A and cluster B. Remarkably, cluster B T1DM individuals, who exhibit increased expression of a set of 14q32 miRNAs, show better glycemic control and display a different blood immunomics profile. Our findings suggest that this set of circulating miRNAs can identify two different T1DM subgroups with distinct blood immunomics at baseline and clinical outcomes during follow-up.


Asunto(s)
Cromosomas Humanos Par 14 , MicroARN Circulante , Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/sangre , MicroARN Circulante/sangre , MicroARN Circulante/genética , Masculino , Femenino , Cromosomas Humanos Par 14/genética , Adulto , Adolescente , Sitios Genéticos , Adulto Joven , MicroARNs/genética , MicroARNs/sangre , Biomarcadores/sangre , Niño , Predisposición Genética a la Enfermedad
8.
Proteomes ; 10(2)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35645370

RESUMEN

In the era of multi-omic sciences, dogma on singular cause-effect in physio-pathological processes is overcome and system biology approaches have been providing new perspectives to see through. In this context, extracellular vesicles (EVs) are offering a new level of complexity, given their role in cellular communication and their activity as mediators of specific signals to target cells or tissues. Indeed, their heterogeneity in terms of content, function, origin and potentiality contribute to the cross-interaction of almost every molecular process occurring in a complex system. Such features make EVs proper biological systems being, therefore, optimal targets of omic sciences. Currently, most studies focus on dissecting EVs content in order to either characterize it or to explore its role in various pathogenic processes at transcriptomic, proteomic, metabolomic, lipidomic and genomic levels. Despite valuable results being provided by individual omic studies, the categorization of EVs biological data might represent a limit to be overcome. For this reason, a multi-omic integrative approach might contribute to explore EVs function, their tissue-specific origin and their potentiality. This review summarizes the state-of-the-art of EVs omic studies, addressing recent research on the integration of EVs multi-level biological data and challenging developments in EVs origin.

9.
Transl Res ; 247: 137-157, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35351622

RESUMEN

Type 2 diabetes (T2D), a chronic metabolic disease, has attained the status of a global epidemic with steadily increasing incidence worldwide. Improved diagnosis, stratification and prognosis of T2D patients and the development of more effective treatments are needed. In this era of personalized medicine, the discovery and evaluation of innovative circulating biomarkers can be an effective tool for better stratification, prognosis and therapeutic selection/management of T2D patients. MicroRNAs (miRNAs), a class of small non-coding RNAs that modulate gene expression, have been investigated as potential circulating biomarkers in T2D. Several studies have investigated the expression of circulating miRNAs in T2D patients from various biological fluids, including plasma and serum, and have demonstrated their potential as diagnostic and prognostic biomarkers, as well as biomarkers of response to therapy. In this review, we provide an overview of the current state of knowledge, focusing on circulating miRNAs that have been consistently expressed in at least two independent studies, in order to identify a set of consistent biomarker candidates in T2D. The expression levels of miRNAs, correlation with clinical parameters, functional roles of miRNAs and their potential as biomarkers are reported. A systematic literature search and assessment of studies led to the selection and review of 10 miRNAs (miR-126-3p, miR-223-3p, miR-21-5p, miR-15a-5p, miR-24-3p, miR-34a-5p, miR-146a-5p, miR-148a-3p, miR-30d-5p and miR-30c-5p). We also present technical challenges and our thoughts on the potential validation of circulating miRNAs and their application as biomarkers in the context of T2D.


Asunto(s)
MicroARN Circulante , Diabetes Mellitus Tipo 2 , MicroARNs , Biomarcadores , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Humanos , MicroARNs/metabolismo , Pronóstico
10.
Front Immunol ; 13: 833141, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359976

RESUMEN

The interaction between genetic and environmental factors determines the development of type 1 diabetes (T1D). Some viruses are capable of infecting and damaging pancreatic ß-cells, whose antiviral response could be modulated by specific viral RNA receptors and sensors such as melanoma differentiation associated gene 5 (MDA5), encoded by the IFIH1 gene. MDA5 has been shown to be involved in pro-inflammatory and immunoregulatory outcomes, thus determining the response of pancreatic islets to viral infections. Although the function of MDA5 has been previously well explored, a detailed immunohistochemical characterization of MDA5 in pancreatic tissues of nondiabetic and T1D donors is still missing. In the present study, we used multiplex immunofluorescence imaging analysis to characterize MDA5 expression and distribution in pancreatic tissues obtained from 22 organ donors (10 nondiabetic autoantibody-negative, 2 nondiabetic autoantibody-positive, 8 recent-onset, and 2 long-standing T1D). In nondiabetic control donors, MDA5 was expressed both in α- and ß-cells. The colocalization rate imaging analysis showed that MDA5 was preferentially expressed in α-cells. In T1D donors, we observed an increased colocalization rate of MDA5-glucagon with respect to MDA5-insulin in comparison to nondiabetic controls; such increase was more pronounced in recent-onset with respect to long-standing T1D donors. Of note, an increased colocalization rate of MDA5-glucagon was found in insulin-deficient-islets (IDIs) with respect to insulin-containing-islets (ICIs). Strikingly, we detected the presence of MDA5-positive/hormone-negative endocrine islet-like clusters in T1D donors, presumably due to dedifferentiation or neogenesis phenomena. These clusters were identified exclusively in donors with recent disease onset and not in autoantibody-positive nondiabetic donors or donors with long-standing T1D. In conclusion, we showed that MDA5 is preferentially expressed in α-cells, and its expression is increased in recent-onset T1D donors. Finally, we observed that MDA5 may also characterize the phenotype of dedifferentiated or newly forming islet cells, thus opening to novel roles for MDA5 in pancreatic endocrine cells.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Endocrinas , Células Secretoras de Glucagón , Islotes Pancreáticos , Autoanticuerpos/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Células Endocrinas/metabolismo , Glucagón/metabolismo , Células Secretoras de Glucagón/metabolismo , Humanos , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Donantes de Tejidos
11.
Cell Death Discov ; 8(1): 340, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906204

RESUMEN

The loss of functional ß-cell mass in type 2 diabetes (T2D) is associated with molecular events that include ß-cell apoptosis, dysfunction and/or dedifferentiation. MicroRNA miR-184-3p has been shown to be involved in several ß-cell functions, including insulin secretion, proliferation and survival. However, the downstream targets and upstream regulators of miR-184-3p have not been fully elucidated. Here, we show reduced miR-184-3p levels in human T2D pancreatic islets, whereas its direct target CREB regulated transcription coactivator 1 (CRTC1) was increased and protects ß-cells from lipotoxicity- and inflammation-induced apoptosis. Downregulation of miR-184-3p in ß-cells leads to upregulation of CRTC1 at both the mRNA and protein levels. Remarkably, the protective effect of miR-184-3p is dependent on CRTC1, as its silencing in human ß-cells abrogates the protective mechanism mediated by inhibition of miR-184-3p. Furthermore, in accordance with miR-184-3p downregulation, we also found that the ß-cell-specific transcription factor NKX6.1, DNA-binding sites of which are predicted in the promoter sequence of human and mouse MIR184 gene, is reduced in human pancreatic T2D islets. Using chromatin immunoprecipitation analysis and mRNA silencing experiments, we demonstrated that NKX6.1 directly controls both human and murine miR-184 expression. In summary, we provide evidence that the decrease in NKX6.1 expression is accompanied by a significant reduction in miR-184-3p expression and that reduction of miR-184-3p protects ß-cells from apoptosis through a CRTC1-dependent mechanism.

12.
Front Immunol ; 12: 682948, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177928

RESUMEN

Extracellular vesicles (EVs) are generated by cells of origin through complex molecular mechanisms and released into extracellular environment. Hence, the presence of EVs has been described in multiple biological fluids and in most cases their molecular cargo, which includes non-coding RNAs (ncRNA), messenger RNAs (mRNA), and proteins, has been reported to modulate distinct biological processes. EVs release and their molecular cargo have been demonstrated to be altered in multiple diseases, including autoimmune diseases. Notably, numerous evidence showed a relevant crosstalk between immune system and interacting cells through specific EVs release. The crosstalk between insulin-producing pancreatic ß cells and immune system through EVs bidirectional trafficking has yet started to be deciphered, thus uncovering an intricate communication network underlying type 1 diabetes (T1D) pathogenesis. EVs can also be found in blood plasma or serum. Indeed, the assessment of circulating EVs cargo has been shown as a promising advance in the detection of reliable biomarkers of disease progression. Of note, multiple studies showed several specific cargo alterations of EVs collected from plasma/serum of subjects affected by autoimmune diseases, including T1D subjects. In this review, we discuss the recent literature reporting evidence of EVs role in autoimmune diseases, specifically focusing on the bidirectional crosstalk between pancreatic ß cells and immune system in T1D and highlight the relevant promising role of circulating EVs as disease biomarkers.


Asunto(s)
Diabetes Mellitus Tipo 1/etiología , Diabetes Mellitus Tipo 1/metabolismo , Vesículas Extracelulares/metabolismo , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Inmunomodulación , Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/metabolismo , Autoinmunidad , Transporte Biológico , Biomarcadores , Comunicación Celular , Diabetes Mellitus Tipo 1/terapia , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Exosomas , Homeostasis , Humanos , Células Secretoras de Insulina/inmunología , Células Secretoras de Insulina/metabolismo
13.
STAR Protoc ; 2(3): 100606, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34189472

RESUMEN

The identification and validation of circulating small non-coding RNA (sncRNA) as biomarkers for disease diagnosis, staging, and response to novel therapies is still a compelling challenge. Pre-analytical variables, such as storage temperature or blood hemolysis, and different analytical approaches affect sncRNA stability, detection, and expression, resulting in discrepancies among studies. Here, we report a systematic standardized protocol to reproducibly analyze circulating sncRNAs, employing high-throughput sncRNA sequencing and qRT-PCR validation, from 200 µL of human plasma samples. For details on the use and execution of this protocol, please refer to Ventriglia et al. (2020), Sebastiani et al. (2017), and Dotta et al. (2018).


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Pequeño no Traducido/sangre , Biomarcadores/sangre , Humanos , Reproducibilidad de los Resultados
14.
Front Endocrinol (Lausanne) ; 11: 596898, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33281748

RESUMEN

Increasing evidence demonstrated that the expression of Angiotensin I-Converting Enzyme type 2 (ACE2) is a necessary step for SARS-CoV-2 infection permissiveness. In light of the recent data highlighting an association between COVID-19 and diabetes, a detailed analysis aimed at evaluating ACE2 expression pattern distribution in human pancreas is still lacking. Here, we took advantage of INNODIA network EUnPOD biobank collection to thoroughly analyze ACE2, both at mRNA and protein level, in multiple human pancreatic tissues and using several methodologies. Using multiple reagents and antibodies, we showed that ACE2 is expressed in human pancreatic islets, where it is preferentially expressed in subsets of insulin producing ß-cells. ACE2 is also highly expressed in pancreas microvasculature pericytes and moderately expressed in rare scattered ductal cells. By using different ACE2 antibodies we showed that a recently described short-ACE2 isoform is also prevalently expressed in human ß-cells. Finally, using RT-qPCR, RNA-seq and High-Content imaging screening analysis, we demonstrated that pro-inflammatory cytokines, but not palmitate, increase ACE2 expression in the ß-cell line EndoC-ßH1 and in primary human pancreatic islets. Taken together, our data indicate a potential link between SARS-CoV-2 and diabetes through putative infection of pancreatic microvasculature and/or ductal cells and/or through direct ß-cell virus tropism.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/virología , Células Secretoras de Insulina/metabolismo , Microvasos/metabolismo , Páncreas/metabolismo , SARS-CoV-2/aislamiento & purificación , COVID-19/metabolismo , COVID-19/patología , Células Cultivadas , Citocinas/metabolismo , Humanos , Células Secretoras de Insulina/virología , Microvasos/virología , Páncreas/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA