Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Phys Chem A ; 115(38): 10438-44, 2011 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-21823649

RESUMEN

Time resolved infrared spectroscopy has been applied to study in situ the evaporation process of a 3-glycidoxypropyltrimethoxysilane hybrid sol by casting a droplet on a ZnSe substrate; the analysis has been performed in the middle-infrared range and in the near-infrared range. The experiment has allowed following the structural changes induced by water evaporation and the formation of ordered structures within the cast film; the CH(2) scissoring bands have been used as a fingerprint for the disorder to order transition of the hybrid. The experiment has been done using both a fresh sol and an aged sol which produce respectively an amorphous material and a crystalline hybrid material. The analysis has shown that the epoxy groups do not react during the evaporation while the silica structure shows only a slight condensation and an increase in open cage-like species. At the end of evaporation the hybrid has a "soft-like" state which allows structural rearrangements to self-order.


Asunto(s)
Membranas Artificiales , Silanos/química , Estructura Molecular , Espectroscopía Infrarroja por Transformada de Fourier/instrumentación , Factores de Tiempo , Volatilización
2.
RSC Adv ; 11(26): 15557-15564, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35481193

RESUMEN

The potential of silicon-based fluorescent platforms for the detection of trace toxic metal ions was investigated in an aqueous environment. To this aim, silicon chips were first functionalized with amino groups, and fluorescein organic dyes, used as sensing molecules, were then covalently linked to the surface via formation of thiourea groups. The obtained hybrid heterostructures exhibited high sensitivity and selectivity towards copper(ii), a limit of detection compatible with the recommended upper limits for copper in drinking water, and good reversibility using a standard metal-chelating agent. The fluorophore-analyte interaction mechanism at the basis of the reported fluorescence quenching, as well as the potential of performance improvement, were also studied. The herein presented sensing architecture allows, in principle, tailoring of the selectivity towards other metal ions by proper fluorophore selection, and provides a favorable outlook for integration of fluorescent chemosensors with silicon photonics technology.

3.
Beilstein J Nanotechnol ; 6: 500-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25821692

RESUMEN

Biosensing technologies based on plasmonic nanostructures have recently attracted significant attention due to their small dimensions, low-cost and high sensitivity but are often limited in terms of affinity, selectivity and stability. Consequently, several methods have been employed to functionalize plasmonic surfaces used for detection in order to increase their stability. Herein, a plasmonic surface was modified through a controlled, silica platform, which enables the improvement of the plasmonic-based sensor functionality. The key processing parameters that allow for the fine-tuning of the silica layer thickness on the plasmonic structure were studied. Control of the silica coating thickness was achieved through a combined approach involving sol-gel and dip-coating techniques. The silica films were characterized using spectroscopic ellipsometry, contact angle measurements, atomic force microscopy and dispersive spectroscopy. The effect of the use of silica layers on the optical properties of the plasmonic structures was evaluated. The obtained results show that the silica coating enables surface protection of the plasmonic structures, preserving their stability for an extended time and inducing a suitable reduction of the regeneration time of the chip.

4.
J Phys Chem Lett ; 5(17): 2935-40, 2014 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26278239

RESUMEN

Ultrathin films of silica realized by sol-gel synthesis and dip-coating techniques were successfully applied to predefined metal/polymer plasmonic nanostructures to spectrally tune their resonance modes and to increase their sensitivity to local refractive index changes. Plasmon resonance spectral shifts up to 100 nm with slope efficiencies of ∼8 nm/nm for increasing layer thickness were attained. In the ultrathin layer regime (<10 nm), which could be reached by suitable dilution of the silica precursors and optimization of the deposition speed, the sensitivity of the main plasmonic resonance to refractive index changes in aqueous solution could be increased by over 50% with respect to the bare plasmonic chip. Numerical simulations supported experimental data and unveiled the mechanism responsible for the optical sensitivity gain, proving an effective tool in the design of high-performance plasmonic sensors.

5.
Nat Commun ; 5: 5049, 2014 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-25266869

RESUMEN

Organic-inorganic perovskites are a class of solution-processed semiconductors holding promise for the realization of low-cost efficient solar cells and on-chip lasers. Despite the recent attention they have attracted, fundamental aspects of the photophysics underlying device operation still remain elusive. Here we use photoluminescence and transmission spectroscopy to show that photoexcitations give rise to a conducting plasma of unbound but Coulomb-correlated electron-hole pairs at all excitations of interest for light-energy conversion and stimulated optical amplification. The conductive nature of the photoexcited plasma has crucial consequences for perovskite-based devices: in solar cells, it ensures efficient charge separation and ambipolar transport while, concerning lasing, it provides a low threshold for light amplification and justifies a favourable outlook for the demonstration of an electrically driven laser. We find a significant trap density, whose cross-section for carrier capture is however low, yielding a minor impact on device performance.

6.
ACS Appl Mater Interfaces ; 4(8): 3916-22, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22758781

RESUMEN

The controlled release of nanoparticles from a hybrid organic-inorganic surface allows for developing several applications based on a slow delivery of oxygen scavengers into specific environments. We have successfully grafted ceria nanoparticles on a hybrid film surface and tested their release in a buffer solution; the tests have shown that the particles are continuously delivered within a time scale of hours. The hybrid film has been synthesized using 3-glycidoxypropyltrimethoxysilane as precursor alkoxide; the synthesis has been performed in highly basic conditions to control the polycondensation reactions of both organic and inorganic networks via controlled aging of the solution. Only films prepared from aged solutions are able to graft ceria nanoparticles on their surface. The ceria nanoparticles have been characterized by X-ray diffraction, transmission electron microscopy and UV-vis spectroscopy, the hybrid films have been analyzed by Fourier transform infrared spectroscopy, atomic force microscopy and Raman spectroscopy. Raman imaging has been used for the release test. The hybrid film-ceria nanoparticles system fulfils the requirements of optical transparency and stability in buffer solutions which are necessary for biomedical applications.


Asunto(s)
Materiales Biocompatibles/química , Cerio/química , Nanopartículas/química , Nanotecnología/métodos , Tampones (Química) , Depuradores de Radicales Libres , Radicales Libres , Concentración de Iones de Hidrógeno , Ensayo de Materiales , Modelos Químicos , Compuestos Orgánicos/química , Óxidos , Silanos/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Espectrometría Raman/métodos , Difracción de Rayos X
7.
Dalton Trans ; (42): 9146-52, 2009 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-20449190

RESUMEN

The reactions of 3-glycidoxypropyltrimethoxysilane in a highly basic aqueous solution have been studied by multinuclear magnetic resonance and light scattering techniques. The study has shown that in this peculiar chemical environment the alkoxy groups of 3-glycidoxypropyltrimethoxysilane undergo a fast hydrolysis and condensation which favor the formation of open hybrid silica cages. The silica condensation reaches 90% at a short aging time but does not go to completion even after 9 days. The highly basic conditions also slow down the opening of the epoxies which fully react only after several days of aging. The epoxy opening generates different chemical species and several reaction pathways have been observed; in particular, the formation of polyethylene oxide chains, diols, termination of the organic chain by methyl ether groups and formation of dioxane species. These reactions are slow and proceed gradually with aging; light scattering analysis has shown that clusters of dimensions lower than 20 nm are formed after two days of reactions, but their further growth is hindered by the highly basic conditions which limit full silica condensation and formation of organic chains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA