Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Pept Sci ; 25(5): e3162, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30859695

RESUMEN

Milk is a nutritionally important source of bioactive peptides with anti-inflammatory, immunomodulatory, anticancer, and antioxidant properties. These compounds can be useful as ingredients of functional food. For this reason, in the last decades, bioactive peptides attracted the interest of researchers and food companies. In this work, the results obtained with six milk-derived bioactive peptides (Y-4-R, V-6-R, V-7-K, A-10-F, R-10-M, and H-9-M) synthesized and studied for their antioxidant properties in vitro and in a cellular model, are reported. These molecules correspond to peptide fragments derived from parent compounds able to cross the apical membrane of Caco-2 cell layer and released in the basolateral compartment. In vitro, antioxidant tests such as 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and crocin bleaching showed antioxidant activity mainly for peptides Y-4-R and V-6-R, respectively. In Caco-2 cells, peptides V-6-R, H-9-R, Y-4-R, and particularly R-10-M and V-7-K are able to prevent the decrease of viability due to oxidative stress. The latter peptide is also the most effective in protecting cells from lipid peroxidation. In conclusion, the reported hydrolyzed peptides are shown to exert the antioxidant properties both in vitro and in a cellular model.


Asunto(s)
Antioxidantes/farmacología , Benzotiazoles/antagonistas & inhibidores , Compuestos de Bifenilo/antagonistas & inhibidores , Leche/química , Modelos Biológicos , Péptidos/farmacología , Picratos/antagonistas & inhibidores , Ácidos Sulfónicos/antagonistas & inhibidores , Animales , Antioxidantes/síntesis química , Antioxidantes/química , Células CACO-2 , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Biología Computacional , Humanos , Peroxidación de Lípido/efectos de los fármacos , Péptidos/síntesis química , Péptidos/química , Conformación Proteica
2.
Food Chem ; 439: 138124, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38064839

RESUMEN

The evolving field of food technology is increasingly dedicated to developing functional foods. This study explored bioactive peptides from sunflower protein isolate (SPI), obtained from defatted flour, a by-product of the oil processing industry. SPI underwent simulated gastrointestinal digestion and the obtained peptide-enriched fraction (PEF) showed antioxidant properties in vivo, in zebrafish. Among the peptides present in PEF identified by mass spectrometry analysis, we selected those with antioxidant properties by in silico evaluation, considering their capability to interact with Keap1, key protein in the regulation of antioxidant response. The selected peptides were synthesized and evaluated in a cellular model. As a result, DVAMPVPK, VETGVIKPG, TTHTNPPPEAE, LTHPQHQQQGPSTG and PADVTPEEKPEV activated Keap1/Nrf2 pathway leading to Antioxidant Response Element-regulated enzymes upregulation. Since the crosstalk between Nrf2 and NF-κB is well known, the potential anti-inflammatory activity of the peptides was assessed and principally PADVTPEEKPEV showed good features both as antioxidant and anti-inflammatory molecule.


Asunto(s)
Antioxidantes , Helianthus , Animales , Antioxidantes/química , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Helianthus/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Pez Cebra/metabolismo , Péptidos/farmacología , Péptidos/metabolismo , Antiinflamatorios/farmacología , Modelos Animales , Simulación por Computador
3.
Antioxidants (Basel) ; 9(12)2020 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-33352784

RESUMEN

Bioactive peptides are a group of molecules with health beneficial properties, deriving from food matrices. They are protein fragments consisting of 2-20 amino acids that can be released by microbial fermentation, food processing and gastrointestinal digestion. Once hydrolyzed from their native proteins, they can have different functions including antioxidant activity, which is important for cell protection by oxidant agents. In this work, fermented soy products were digested in vitro in order to improve the release of bioactive peptides. These were extracted, purified and analyzed in vitro and in a cellular model to assess their antioxidant activity. Peptide sequences were identified by LC-MS/MS analysis and a molecular docking approach was used to predict their ability to interact with Keap1, one of the key proteins of the Keap1/Nrf2 pathway, the major system involved in redox regulation. Peptides showing a high score of interaction were selected and tested for their antioxidant properties in a cellular environment using the Caco-2 cell line and examined for their capability to defend cells against oxidative stress. Our results indicate that several of the selected peptides were indeed able to activate the Keap1/Nrf2 pathway with the consequent overexpression of antioxidant and phase II enzymes.

4.
Antioxidants (Basel) ; 9(2)2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-32013158

RESUMEN

Due to their beneficial properties, fermented foods are considered important constituents of the human diet. They also contain bioactive peptides, health-promoting compounds studied for a wide range of effects. In this work, several antioxidant peptides extracted from fermented milk proteins were investigated. First, enriched peptide fractions were purified and analysed for their antioxidant capacity in vitro and in a cellular model. Subsequently, from the most active fractions, 23 peptides were identified by mass spectrometry MS/MS), synthesized and tested. Peptides N-15-M, E-11-F, Q-14-R and A-17-E were selected for their antioxidant effects on Caco-2 cells both in the protection against oxidative stress and inhibition of ROS production. To define their action mechanism, the activation of the Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2(Keap1/Nrf2) pathway was studied evaluating the translocation of Nrf2 from cytosol to nucleus. In cells treated with N-15-M, Q-14-R and A-17-E, a higher amount of Nrf2 was found in the nucleus with respect to the control. In addition, the three active peptides, through the activation of Keap1/Nrf2 pathway, led to overexpression and increased activity of antioxidant enzymes. Molecular docking analysis confirmed the potential ability of N-15-M, Q-14-R and A-17-E to bind Keap1, showing their destabilizing effect on Keap1/Nrf2 interaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA