Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Clin Exp Dent ; 13(5): e505-e510, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33981399

RESUMEN

BACKGROUND: Nylon is a polymer that its use to reinforce dental resins has shown positive results such as increased flexural strength. The aim of this study was to evaluate the bond strength between dental resins and a nylon reinforcement. MATERIAL AND METHODS: Forty cylindrical nylon blocks with 13 x 23 mm with 0.5% by volume of silica and 40 without were made. Half of the samples of each nylon composition were sandblasted with aluminum oxide (50µm) for 3 s (2.8 bar pressure, distance: 20 mm, incidence angle: 90o). On the nylon blocks, cylinders of chemically activated acrylic resin and indirect composite resin were made, with a bonding area of 6,28 mm2. Eight different groups were obtained according to the material used and the surface treatment (n = 10): Acrylic Resin + Nylon; GAS: Acrylic Resin + Nylon with Silica; GAT: Acrylic Resin + Nylon (Al2O3); GAST: Acrylic Resin + Nylon with Silica (Al2O3); GC: Composite Resin + Nylon; GCS: Composite Resin + Nylon with Silica; GCT: Composite Resin + Nylon (Al2O3); GCST: Composite Resin + Nylon with Silica (Al2O3). The shear test was carried out. The Student's and the Kruskal-Wallis test was adopted. RESULTS: There was no statistically difference in the bond strength for nylon with silica for the acrylic resin group. For the composite groups, nylon with silica did not present a statistically difference without surface treatment (p = 0.10) and with surface treatment the bond strength decreased (p = 0.000). The GCT showed a higher bond strength (0.89 MPa). The surface treatment improved the bond strength for the both groups. CONCLUSIONS: The presence of silica in the nylon composition did not influence the bond strength between materials evaluated. However, the surface treatment with aluminum oxide proved to be favorable for this adhesion. Key words:Nylons - Resins, Synthetic - Structures Strengthening - Dental Research.

2.
Int J Periodontics Restorative Dent ; 41(2): e45­e54, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33079975

RESUMEN

This study investigated the influence of silica-nylon reinforcement on the stress distribution and fracture load of a resin-bonded fixed partial dental prosthesis (RBFDP). Three-unit RBFDPs (N = 60) were inserted between the first premolar and the first molar of a maxillary model. The groups were divided according to the nylon reinforcement (n = 20/group): conventional fixed prosthesis (without reinforcement), prosthesis with silica-nylon reinforcement positioned vertically, and prosthesis with silica-nylon reinforcement positioned horizontally. Half of the specimens were tested after 24 hours in a universal testing machine until fracture (1,000 kgf; 1 mm/minute) to determine the single load to fracture. The other half was submitted to mechanical aging during 106 cycles (100 N, 2 Hz), totaling 6 groups (n = 10/group). The results were analyzed by two-way analysis of variance (ANOVA) (α = 5%). The stress distribution for non-aged groups was simulated using finite element analysis. The numeric prostheses were modeled similarly to the in vitro assay. ANOVA showed no statistical difference between groups (P < .05) for load to fracture. However, the use of the reinforcement provided stability even after the failure, as the parts did not separate. The computational analysis showed similar biomechanical behavior among the groups. The use of the nylon reinforcement does not influence the fracture load or the stress distribution, but it does enable the prosthesis to remain in position after failure.


Asunto(s)
Implantes Dentales , Nylons , Anciano , Fracaso de la Restauración Dental , Análisis del Estrés Dental , Humanos , Ensayo de Materiales , Dióxido de Silicio , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA