Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Bioconjug Chem ; 31(4): 1188-1198, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32208683

RESUMEN

Currently, there is demand for fluorescent oligonucleotide probes for diagnostic purposes. To address this necessity, we developed nucleosides containing a flexible spacer with an intercalating moiety at its end (NIC molecules). The intercalator is based on 4-hydroxybenzylidene imidazolinone (HBI), found in the Green Fluorescent Protein. We synthesized 20-mer oligonucleotides, ON1-ON4, incorporating the DMTr phosphorodiamidite monomer of dUHBI, 2, and the corresponding dUDFHBI, 5b, monomer. ON1-ON4 target the HER-2 mRNA breast cancer marker for the diagnostics of breast cancer subtype. Hybridization of ON1/ON2 and ON3/ON4 with complementary 2'-OMe-RNA resulted in emission at 462 and 481 nm, respectively, and up to 46-fold increase in fluorescence intensity. CD and 19F-NMR data indicated that HBI and DFHBI fluorophores bind as intercalators and stabilize the duplexes (up to ΔTm 6 °C). Furthermore, addition of ON1-ON4 to total RNA extracted from cancer cells that overexpress HER-2 mRNA, resulted in a significant fluorescence enhancement of ON3 and ON4. The latter sensitively detected low concentrations of the target mRNA (at total RNA 30 ng/µL). These probes were photostable for 200 min. Using a dilution curve, we quantified the number of HER-2 transcripts in a cell. In conclusion, ON3 and ON4 are promising diagnostic probes for an easy, instantaneous, specific, and sensitive detection of levels of oncogenes. Importantly, the NIC concept, demonstrated here for diagnostics of breast cancer, is universal and may be applied not only in a clinical setting but also for the detection of any RNA.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Colorantes Fluorescentes/química , Límite de Detección , Receptor ErbB-2/genética , Línea Celular Tumoral , Humanos , Hibridación de Ácido Nucleico , ARN Mensajero/química , ARN Mensajero/genética
3.
Purinergic Signal ; 15(2): 247-263, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31025169

RESUMEN

Overproduction of extracellular diphosphate due to hydrolysis of ATP by NPP1 leads to pathological calcium diphosphate (pyrophosphate) dihydrate deposition (CPPD) in cartilage, resulting in a degenerative joint disease that today lacks a cure. Here, we targeted the identification of novel NPP1 inhibitors as potential therapeutic agents for CPPD deposition disease. Specifically, we synthesized novel analogs of AMP (NPP1 reaction product) and ADP (NPP1 inhibitor). These derivatives incorporate several chemical modifications of the natural nucleotides including (1) a methylene group replacing the Pα,ß-bridging oxygen atom to provide metabolic resistance, (2) sulfonate group(s) replacing phosphonate(s) to improve binding to NPP1's catalytic zinc ions, (3) an acyclic nucleotide analog to allow flexible binding in the NPP1 catalytic site, and (4) a benzimidazole base replacing adenine. Among the investigated compounds, adenine-N9-(methoxy)ethyl-ß-bisphosphonate, 10, was identified as an NPP1 inhibitor (Ki 16.3 µM vs. the artificial substrate p-nitrophenyl thymidine-5'-monophosphate (p-Nph-5'-TMP), and 9.60 µM vs. the natural substrate, ATP). Compound 10 was selective for NPP1 vs. human NPP3, human CD39, and tissue non-specific alkaline phosphatase (TNAP), but also inhibited human CD73 (Ki 12.6 µM). Thus, 10 is a dual NPP1/CD73 inhibitor, which could not only be of interest for treating CPPD deposition disease and calcific aortic valve disease but may also be considered for the immunotherapy of cancer. Compound 10 proved to be a promising inhibitor, which almost completely reduces NPPase activity in human osteoarthritic chondrocytes at a concentration of 100 µM.


Asunto(s)
Adenosina Difosfato/análogos & derivados , Adenosina Trifosfato/análogos & derivados , Inhibidores Enzimáticos/farmacología , Pirofosfatasas/antagonistas & inhibidores , Condrocalcinosis , Condrocitos/efectos de los fármacos , Humanos , Osteoartritis , Hidrolasas Diéster Fosfóricas
4.
Inorg Chem ; 58(14): 8995-9003, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31247811

RESUMEN

Recently, we reported on a series of aminomethylene-phosphonate (AMP) analogues, bearing one or two heterocyclic groups on the aminomethylene moiety, as promising Zn(II) chelators. Given the strong Zn(II) binding properties of these compounds, they may find useful applications in metal chelation therapy. With a goal of inhibiting the devastating oxidative damage caused by prion protein in prion diseases, we explored the most promising ligand, {bis[(1H-imidazol-4-yl)methyl]amino}methylphosphonic acid, AMP-(Im)2, 4, as an inhibitor of the oxidative reactivity associated with the Cu(II) complex of prion peptide fragment 84-114. Specifically, we first characterized the Cu(II) complex with AMP-(Im)2 by ultraviolet-visible spectroscopy and electrochemical measurements that indicated the high chemical and electrochemical stability of the complex. Potentiometric pH titration provided evidence of the formation of a stable 1:1 [Cu(II)-AMP-(Im)2]+ complex (ML), with successive binding of a second AMP-(Im)2 molecule yielding ML2 complex [Cu(II)-(AMP-(Im)2)2]+ (log K' = 15.55), and log ß' = 19.84 for ML2 complex. The CuN3O1 ML complex was demonstrated by X-ray crystallography, indicating the thermodynamically stable square pyramidal complex. Chelation of Cu(II) by 4 significantly reduced the oxidation potential of the former. CuCl2 and the 1:2 Cu:AMP-(Im)2 complex showed one-electron redox of Cu(II)/Cu(I) at 0.13 and -0.35 V, respectively. Indeed, 4 was found to be a potent antioxidant that at a 1:1:1 AMP-(Im)2:Cu(II)-PrP84-114 molar ratio almost totally inhibited the oxidation reaction of 4-methylcatechol. Circular dichroism data suggest that this antioxidant activity is due to formation of a ternary, redox inactive Cu(II)-Prp84-114-[AMP-(Im)2] complex. Future studies in prion disease animal models are warranted to assess the potential of 4 to inhibit the devastating oxidative damage caused by PrP.


Asunto(s)
Cobre/química , Isoxazoles/química , Priones/química , Tetrazoles/química , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica
5.
Org Biomol Chem ; 17(46): 9913-9923, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31720670

RESUMEN

Nucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) inhibitors have been suggested as a potential treatment for calcium pyrophosphate dihydrate (CPPD) deposition disease. Here, we targeted the development of improved NPP1 inhibitors based on acyclic mimics of Pα,α-phosphorodithioate-substituted adenine nucleotides, 7-10. The latter were obtained in a facile two-step synthesis from adenine-(methoxy)ethanol. Among analogs 7-10, adenine-(methoxy)ethoxy-Pα,α-dithio-triphosphate, 8, was the most potent NPP1 inhibitor both with purified enzyme (IC50 0.645 µM) and in osteoarthritic human chondrocytes (IC50 0.033 µM). Furthermore, it efficaciously (10-fold vs. control) inhibited ATP-induced CPPD in human articular chondrocytes. Importantly, 8 was a highly selective NPP1 inhibitor which showed only minor inhibition of NPP3, CD39 and CD73, and did not inhibit TNAP (tissue nonspecific alkaline phosphatase) activity in human chondrocytes. Furthermore, 8 did not activate P2Y1,2,6 receptors. Analog 8 was not toxic to cultured chondrocytes at 100 µM. Therefore, 8 may be suitable for further development as a drug candidate for the treatment of CPPD arthritis and other NPP1-related diseases.


Asunto(s)
Adenina/farmacología , Pirofosfato de Calcio/antagonistas & inhibidores , Condrocitos/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Osteoartritis de la Rodilla/tratamiento farmacológico , Polifosfatos/farmacología , Pirofosfatasas/antagonistas & inhibidores , Compuestos de Sulfhidrilo/farmacología , Adenina/síntesis química , Adenina/química , Pirofosfato de Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Condrocitos/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/patología , Hidrolasas Diéster Fosfóricas/metabolismo , Polifosfatos/química , Pirofosfatasas/metabolismo , Relación Estructura-Actividad , Compuestos de Sulfhidrilo/química
6.
Rheumatology (Oxford) ; 57(8): 1472-1480, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29688536

RESUMEN

Objectives: Calcium pyrophosphate deposition (CPPD) is associated with osteoarthritis and is the cause of a common inflammatory articular disease. Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (eNPP1) is the major ecto-pyrophosphatase in chondrocytes and cartilage-derived matrix vesicles (MVs). Thus, eNPP1 is a principle contributor to extracellular pyrophosphate levels and a potential target for interventions aimed at preventing CPPD. Recently, we synthesized and described a novel eNPP1-specific inhibitor, SK4A, and we set out to evaluate whether this inhibitor attenuates nucleotide pyrophosphatase activity in human OA cartilage. Methods: Cartilage tissue, chondrocytes and cartilage-derived MVs were obtained from donors with OA undergoing arthroplasty. The effect of SK4A on cell viability was assayed by the XTT method. eNPP1 expression was evaluated by western blot. Nucleotide pyrophosphatase activity was measured by a colorimetric assay and by HPLC analysis of adenosine triphosphate (ATP) levels. ATP-induced calcium deposition in cultured chondrocytes was visualized and quantified with Alizarin red S staining. Results: OA chondrocytes expressed eNPP1 in early passages, but this expression was subsequently lost upon further passaging. Similarly, significant nucleotide pyrophosphatase activity was only detected in early-passage chondrocytes. The eNPP1 inhibitor, SK4A, was not toxic to chondrocytes and stable in culture medium and human plasma. SK4A effectively inhibited nucleotide pyrophosphatase activity in whole cartilage tissue, in chondrocytes and in cartilage-derived MVs and reduced ATP-induced CPPD. Conclusion: Nucleotide analogues such as SK4A may be developed as potent and specific inhibitors of eNPP1 for the purpose of lowering extracellular pyrophosphate levels in human cartilage with the aim of preventing and treating CPPD disease.


Asunto(s)
Calcinosis/tratamiento farmacológico , Pirofosfato de Calcio/metabolismo , Condrocalcinosis/tratamiento farmacológico , Condrocitos/patología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/farmacología , Pirofosfatasas/antagonistas & inhibidores , Calcinosis/metabolismo , Calcinosis/patología , Células Cultivadas , Condrocalcinosis/metabolismo , Condrocalcinosis/patología , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Colorimetría , Humanos , Immunoblotting , Hidrolasas Diéster Fosfóricas/biosíntesis , Pirofosfatasas/biosíntesis
7.
Purinergic Signal ; 14(3): 271-284, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30019187

RESUMEN

Extracellular nucleotides can regulate the production/drainage of the aqueous humor via activation of P2 receptors, thus affecting the intraocular pressure (IOP). We evaluated 5-OMe-UDP(α-B), 1A, a potent P2Y6-receptor agonist, for reducing IOP and treating glaucoma. Cell viability in the presence of 1A was measured using [3-(4, 5-dimethyl-thiazol-2-yl) 2, 5-diphenyl-tetrazolium bromide] (MTT) assay in rabbit NPE ciliary non-pigmented and corneal epithelial cells, human retinoblastoma, and liver Huh7 cells. The effect of 1A on IOP was determined in acute glaucomatous rabbit hyaluronate model and phenol-induced chronic glaucomatous rabbit model. The origin of activity of 1A was investigated by generation of a homology model of hP2Y6-R and docking studies. 1A did not exert cytotoxic effects up to 100 mM vs. trusopt and timolol in MTT assay in ocular and liver cells. In normotensive rabbits, 100 µM 1A vs. xalatan, trusopt, and pilocarpine reduced IOP by 45 vs. 20-30%, respectively. In the phenol animal model, 1A (100 µM) showed reduction of IOP by 40 and 20%, following early and late administration, respectively. Docking results suggest that the high activity and selectivity of 1A is due to intramolecular interaction between Pα-BH3 and C5-OMe which positions 1A in a most favorable site inside the receptor. P2Y6-receptor agonist 1A effectively and safely reduces IOP in normotense, acute, and chronic glaucomatous rabbits, and hence may be suggested as a novel approach for the treatment of glaucoma.


Asunto(s)
Glaucoma , Presión Intraocular/efectos de los fármacos , Agonistas del Receptor Purinérgico P2Y/farmacología , Receptores Purinérgicos P2/efectos de los fármacos , Animales , Humanos , Conejos , Uridina Difosfato/química , Uridina Difosfato/farmacología
8.
Org Biomol Chem ; 14(20): 4640-53, 2016 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-27109038

RESUMEN

Currently, there is an urgent need for biocompatible metal-ion chelators capable of antioxidant activity and disassembly of amyloid beta (Aß)-aggregates as potential therapeutics for Alzheimer's disease (AD). We recently demonstrated the promising antioxidant activity of adenine/guanine 2',3' or 3',5'-bis(thio)phosphate analogues, 2'-dA/G3'5'PO/S and A2'3'PO/S, and their affinity to Zn(ii)-ions. These findings encouraged us to evaluate them as agents for the dissolution of Aß42-Zn(ii)/Cu(ii) aggregates. Specifically, we explored their ability to bind Cu(ii)/Zn(ii)-ions, the geometry and stoichiometry of these complexes, Cu(ii)/Zn(ii)-binding-sites and binding mode, and the ability of these analogues to dissolve Aß42-Zn(ii)/Cu(ii) aggregates, as well as their effect on the secondary structure of those aggregates. Finally, we identified the most promising agents for dissolution of Aß42-Zn(ii)/Cu(ii) aggregates. Specifically, we observed the formation of a 1 : 1 complex between 2'-dG3'5'PO and Cu(ii), involving O4 ligands. Zn(ii) was coordinated by both thiophosphate groups of 2'-dA3'5'PS and A2'3'PS involving O2S2 ligands in a 1 : 1 stoichiometry. A2'3'PS dissolves Aß42-Zn(ii) and Aß42-Cu(ii) aggregates as effectively as, and 2.5-fold more effectively than EDTA, respectively. Furthermore, 2'-dG3'5'PS and A2'3'PS reverted the Aß42-M(ii) structure, back to that of the free Aß42. Finally, cryo-TEM and TEM images confirmed the disassembly of Aß42 and Aß42-M(ii) aggregates by A2'3'PS. Hence, 2'-dG3'5'PS and A2'3'PS may serve as promising scaffolds for new AD therapeutics, acting as both effective antioxidants and agents for solubilization of Aß42-Cu(ii)/Zn(ii) aggregates.


Asunto(s)
Péptidos beta-Amiloides/química , Cobre/química , Nucleósidos/química , Fragmentos de Péptidos/química , Fosfatos/química , Fosfatos/farmacología , Agregado de Proteínas/efectos de los fármacos , Zinc/química , Antioxidantes/química , Antioxidantes/farmacología , Quelantes/química , Quelantes/farmacología
9.
Biochem Biophys Res Commun ; 460(2): 446-50, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25796332

RESUMEN

Amyloid beta (Aß) oligomers and oxidative stress, typical of Alzheimer's disease, are highly neurotoxic. Previously we identified ATP-γ-S as a most promising antioxidant and neuroprotectant. To further improve both potency and metabolic stability of ATP-γ-S, we designed a related analogue, ATP-γ-S-(α,ß-CH2). We found that ATP-γ-S-(α,ß-CH2) effectively inhibited ROS formation in PC12 cells subjected to Fe(II)-oxidation, slightly better than ATP-γ-S (IC50 0.18 and 0.20 µM, respectively). Moreover, ATP-γ-S-(α,ß-CH2) rescued primary neurons from Aß42 toxicity, 4-fold more potently than ATP-γ-S, (IC50 0.2 and 0.8 µM, respectively). In addition, the metabolic stability of ATP-γ-S-(α,ß-CH2) in PC12 cells during 4 h of incubation, was up to 20% greater than that of ATP-γ-S and ATP. Previously, we found that ATP-γ-S-(α,ß-CH2) resisted hydrolysis by ecto-nucleotidases such as, NPPs and TNAP, and was found to be ∼7-fold more potent agonist than ATP at P2Y11 receptor. Therefore, we propose ATP-γ-S-(α,ß-CH2) as a promising agent for rescue of neurons from insults typical of Alzheimer's disease.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Péptidos beta-Amiloides/toxicidad , Neuronas/efectos de los fármacos , Estrés Oxidativo , Adenosina Trifosfato/fisiología , Animales , Neuronas/metabolismo , Células PC12 , Ratas , Especies Reactivas de Oxígeno/metabolismo
10.
Bioorg Med Chem ; 23(17): 5764-73, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26233801

RESUMEN

P2Y6 receptor (P2Y6-R) is involved in various physiological and pathophysiological events. With a view to set rules for the design of UDP-based reversible P2Y6-R antagonists as potential drugs, we established structure-activity relationship of UDP analogues, bearing modifications at the uracil ring, ribose moiety, and the phosphate chain. For instance, C5-phenyl- or 3-NMe-uridine-5'-α,ß-methylene-diphosphonate, 16 and 23, or lack of 2'-OH, in 12-15, resulted in loss of both agonist and antagonist activity toward hP2Y6-R. However, uridylyl phosphosulfate, 19, selectively inhibited hP2Y6-R (IC50 112 µM) versus P2Y2/4-Rs. In summary, we have established a comprehensive SAR for hP2Y6-R ligands towards the development of hP2Y6-R antagonists.


Asunto(s)
Receptores Purinérgicos P2/química , Nucleótidos de Uracilo/síntesis química , Humanos , Estructura Molecular , Relación Estructura-Actividad , Nucleótidos de Uracilo/química
11.
J Org Chem ; 79(15): 7051-62, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24992467

RESUMEN

To expand the arsenal of fluorescent cytidine analogues for the detection of genetic material, we synthesized para-substituted phenyl-imidazolo-cytidine ((Ph)ImC) analogues 5a-g and established a relationship between their structure and fluorescence properties. These analogues were more emissive than cytidine (λem 398-420 nm, Φ 0.009-0.687), and excellent correlation was found between Φ of 5a-g and σp(-) of the substituent on the phenyl-imidazolo moiety (R(2) = 0.94). Calculations suggested that the dominant tautomer of (Ph)ImC in methanol solution is identical to that of cytidine. DFT calculations of the stable tautomer of selected (Ph)ImC analogues suggested a relationship between the HOMO-LUMO gap and Φ and explained the loss of fluorescence in the nitro analogue. Incorporation of the CF3-(Ph)ImdC analogue into a DNA probe resulted in 6-fold fluorescence quenching of the former. A 17-fold reduction of fluorescence was observed for the G-matched duplex vs ODN(CF3-(Ph)ImdC), while for A-mismatched duplex, only a 2-fold decrease was observed. Furthermore, since the quantum yield of ODN(CF3-(Ph)ImdC):ODN(G) was reduced 17-fold vs that of a single strand, whereas that of ODN(CF3-(Ph)ImdC):ORN(G) was reduced only 3.8-fold, ODN(CF3-(Ph)ImdC) appears to be a DNA-selective probe. We conclude that the ODN(CF3-(Ph)ImdC) probe, exhibiting emission sensitivity upon single nucleotide replacement, may be potentially useful for DNA single nucleotide polymorphism (SNP) typing.


Asunto(s)
Citidina/química , Sondas de ADN/química , ADN/química , Imidazoles/química , Fluorescencia , Polimorfismo de Nucleótido Simple , Teoría Cuántica , Espectrometría de Fluorescencia , Relación Estructura-Actividad
12.
Inorg Chem ; 53(3): 1594-605, 2014 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-24410662

RESUMEN

We synthesized a series of adenine/guanine 2',3'- or 3',5'-bisphosphate and -bisphosphorothioate analogues, 1-6, as potential Cu(+)/Fe(2+) chelators, with a view to apply them as biocompatible and water-soluble antioxidants. We found that electron paramagnetic resonance (EPR)-monitored inhibition of OH radicals production from H2O2, in an Fe(2+)-H2O2 system, by bisphosphate derivatives 1, 3, and 5 (IC50 = 36, 24, and 40 µM, respectively), was more effective than it was by ethylenediaminetetraacetic acid (EDTA), by a factor of 1.5, 2, and 1.4, respectively. Moreover, 2'-deoxyadenosine-3',5'-bisphosphate, 1, was 1.8- and 4.7-times more potent than adenosine 5'-monophosphate (AMP) and adenosine 5'-diphosphate (ADP), respectively. The bisphosphorothioate derivatives 2, 4, and 6 (IC50 = 92, 50, and 80 µM, respectively), exhibited a dual antioxidant activity, acting as both metal-ion chelators and radical scavengers [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assay data indicates IC50 = 50, 70, and 108 µM vs 27 µM for Trolox]. Only 2'-deoxyadenosine-3',5'-bisphosphorothioate, 2, exhibited good inhibition of Cu(+)-induced H2O2 decomposition (IC50 = 78 vs 224 µM for EDTA). Nucleoside-bisphosphorothioate analogues (2, 4, and 6) were weaker inhibitors than the corresponding bisphosphate analogues (1, 3, and 5), due to intramolecular oxidation under Fenton reaction conditions. (1)H- and (31)P NMR monitored Cu(+) titration of 2, showed that Cu(+) was coordinated by both 3',5'-bisphosphorothioate groups, as well as N7-nitrogen atom, while adenosine-2',3'-bisphosphorothioate, 6, coordinated Cu(+) only by 2',3'-bisphosphorothioate groups. In conclusion, an additional terminal phosphate group on AMP/guanosine 5'-monophosphate (GMP) resulted in Fe(2+)-selective chelators highly potent as Fenton reaction inhibitors.


Asunto(s)
Antioxidantes/química , Quelantes/química , Nucleósidos/química , Fosfatos/química , Antioxidantes/farmacología , Quelantes/farmacología , Cobre/química , Hierro/química , Nucleósidos/farmacología , Fosfatos/farmacología
13.
Inorg Chem ; 53(15): 7901-8, 2014 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-25033439

RESUMEN

Bis(dialkyl/aryl-phosphorothioyl)amide (BPA) derivatives are versatile ligands known by their high metal-ion affinity and selectivity. Here, we synthesized related chelators based on bis(1,3,2-dithia/dioxaphospholane-2-sulfide)amide (BTPA/BOPA) scaffolds targeting the chelation of soft metal ions. Crystal structures of BTPA compounds 6 (N(-)R3NH(+)) and 8 (NEt) revealed a gauche geometry, while BOPA compound 7 (N(-)R3NH(+)) exhibited an anti-geometry. Solid-state (31)P magic-angle spinning NMR spectra of BTPA 6-Hg(II) and 6-Zn(II) complexes imply a square planar or tetrahedral geometry of the former and a distorted tetrahedral geometry of the latter, while both BTPA 6-Ni(II) and BOPA 7-Ni(II) complexes possibly form a polymeric structure. In Cu(I)-H2O2 system (Fenton reaction conditions) BTPA compounds 6, 8, and 10 (NCH2Ph) were identified as most potent antioxidants (IC50 32, 56, and 29 µM, respectively), whereas BOPA analogues 7, 9 (NEt), and 11 (NCH2Ph) were found to be poor antioxidants. In Fe(II)-H2O2 system, IC50 values for both BTPA and BOPA compounds exceeded 500 µM indicating high selectivity to Cu(I) versus the borderline Fe(II)-ion. Neither BTPA nor BOPA derivatives showed radical scavenging properties in H2O2 photolysis, implying that inhibition of the Cu(I)-induced Fenton reaction by both BTPA and BOPA analogues occurred predominantly through Cu(I)-chelation. In addition, NMR-monitored Cu(I)- and Zn(II)-titration of BTPA compounds 8 and 10 showed their high selectivity to a soft metal ion, Cu(I), as compared to a borderline metal ion, Zn(II). In summary, lipophilic BTPA analogues are promising highly selective Cu(I) ion chelators.


Asunto(s)
Amidas/química , Quelantes/síntesis química , Cobre/química , Antioxidantes/síntesis química , Antioxidantes/química , Quelantes/química , Cristalografía por Rayos X , Diseño de Fármacos , Espectroscopía de Resonancia Magnética
15.
Org Biomol Chem ; 12(39): 7844-58, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25177827

RESUMEN

Nowadays, most nucleic acid detections using fluorescent probes rely on quenching of fluorescence by energy transfer from one fluorophore to another or to a non-fluorescent molecule (quencher). The most widely used quencher in fluorescent probes is 4-((4-(dimethylamino)phenyl)azo)benzoic acid (DABCYL). We targeted a nucleoside-DABCYL analogue which could be incorporated anywhere in an oligonucleotide sequence and in any number, and used as a quencher in different hybridization sensitive probes. Specifically, we introduced a 5-(4-((dimethylamino)phenyl)azo)benzene)-2'-deoxy-uridine (dU(DAB)) quencher. The photoisomerization and dU(DAB)'s ability to quench fluorescein emission have been investigated. We incorporated dU(DAB) into a series of oligonucleotide (ON) probes including strand displacement probes, labeled with both fluorescein (FAM) and dU(DAB), and TaqMan probes bearing one or two dU(DAB) and a FAM fluorophore. We used these probes for the detection of a DNA target in real-time PCR (RT-PCR). All probes showed amplification of targeted DNA. A dU(DAB) modified TaqMan RT-PCR probe was more efficient as compared to a DABCYL bearing probe (93% vs. 87%, respectively). Furthermore, dU(DAB) had a stabilizing effect on the duplex, causing an increase in Tm up to 11 °C. In addition we showed the photoisomerisation of the azobenzene moiety of dU(DAB) and the dU(DAB) triply-labeled oligonucleotide upon irradiation. These findings suggest that dU(DAB) modified probes are promising probes for gene quantification in real-time PCR detection and as photoswitchable devices.


Asunto(s)
Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Procesos Fotoquímicos , p-Dimetilaminoazobenceno/análogos & derivados , Técnicas de Química Sintética , Desoxiuridina/química , Isomerismo , Hibridación de Ácido Nucleico , Oligonucleótidos/química , Compuestos Organofosforados/química , p-Dimetilaminoazobenceno/síntesis química , p-Dimetilaminoazobenceno/química
16.
Bioorg Med Chem ; 22(9): 2613-21, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24726303

RESUMEN

A large group of fluorescent hybridization probes, includes intercalating dyes for example thiazole orange (TO). Usually TO is coupled to nucleic acids post-synthetically which severely limits its use. Here, we have developed a phosphoramidite monomer, 10, and prepared a 2'-OMe-RNA probe, labeled with 5-(trans-N-hexen-1-yl-)-TO-2'-deoxy-uridine nucleoside, dU(TO), (Nucleoside bearing an Inter-Calating moiety, NIC), for selective mRNA detection. We investigated a series of 15-mer 2'-OMe-RNA probes, targeting the cyclin D1 mRNA, containing one or several dU(TO) at various positions. dU(TO)-2'-OMe-RNA exhibited up to 7-fold enhancement of TO emission intensity upon hybridization with the complementary RNA versus that of the oligomer alone. This NIC-probe was applied for the specific detection of a very small amount of a breast cancer marker, cyclin D1 mRNA, in total RNA extract from cancerous cells (250 ng/µl). Furthermore, this NIC-probe was found to be superior to our related NIF (Nucleoside with Intrinsic Fluorescence)-probe which could detect cyclin D1 mRNA target only at high concentrations (1840 ng/µl). Additionally, dU(T) can be used as a monomer in solid-phase oligonucleotide synthesis, thus avoiding the need for post-synthetic modification of oligonucleotide probes. Hence, we propose dU(TO) oligonucleotides, as hybridization probes for the detection of specific RNA in homogeneous solutions and for the diagnosis of breast cancer.


Asunto(s)
Ciclina D1/metabolismo , Sondas de Oligonucleótidos/metabolismo , ARN Mensajero/análisis , Espectrometría de Fluorescencia , Disparidad de Par Base , Línea Celular Tumoral , Ciclina D1/antagonistas & inhibidores , Ciclina D1/genética , Desoxiuridina/química , Colorantes Fluorescentes/química , Humanos , Desnaturalización de Ácido Nucleico , Hibridación de Ácido Nucleico , Sondas de Oligonucleótidos/síntesis química , Sondas de Oligonucleótidos/química
17.
J Org Chem ; 78(17): 8320-9, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-23895237

RESUMEN

Nucleoside-(5'→P) methylenebisphosphonodithioate analogues are bioisosteres of natural nucleotides. The potential therapeutic applications of these analogues are limited by their relative instability. With a view toward improving their chemical and metabolic stability as well as their affinity toward zinc ions, we developed a novel nucleotide scaffold, nucleoside-5'-tetrathiobisphosphonate. We synthesized P1-(uridine/adenosine-5')-methylenebisphosphonodithioate, 2 and 3, and P1,P2-di(uridine/adenosine-5')-methylenebisphosphonodithioate, 4 and 5. Using (1)H and (31)P NMR-monitored Zn(2+)/Mg(2+) titrations, we found that 5 coordinated Zn(2+) by both N7 nitrogen atoms and both dithiophosphonate moieties, whereas 3 coordinated Zn(2+) by an N7 nitrogen atom and Pß. Both 3 and 5 did not coordinate Mg(2+) ions. (31)P NMR-monitored kinetic studies showed that 3 was more stable at pD 1.5 than 5, with t(1/2) of 44 versus 9 h, respectively, and at pD 11 both showed no degradation for at least 2 weeks. However, 5 was more stable than 3 under an air-oxidizing atmosphere, with t1/2 of at least 3 days versus 14 h, respectively. Analogues 3 and 5 were highly stable to NPP1,3 and NTPDase1,2,3,8 hydrolysis (0-7%). However, they were found to be poor ectonucleotidase inhibitors. Although 3 and 5 did not prove to be effective inhibitors of zinc-containing NPP1/3, which is involved in the pathology of osteoarthritis and diabetes, they may be promising zinc chelators for the treatment of other health disorders involving an excess of zinc ions.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Difosfonatos/química , Nucleósidos/química , Nucleósidos/síntesis química , Compuestos Organotiofosforados/química , Uridina Monofosfato/análogos & derivados , Adenosina Monofosfato/síntesis química , Adenosina Monofosfato/química , Difosfonatos/síntesis química , Estructura Molecular , Compuestos Organotiofosforados/síntesis química , Uridina Monofosfato/síntesis química , Uridina Monofosfato/química
18.
J Org Chem ; 78(23): 11999-2008, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24206423

RESUMEN

Currently, there are no tools that can help the design of useful fluorescent analogues. Hence, we synthesized a series of 8-(substituted cinnamyl)-adenosine analogues, 5-17, and established a relationship between their structure and fluorescence properties. We attempted to find a correlation between maximum emission wavelengths (λ(em)) of 5-17 or their quantum yields (φ), and Hammett constants (σ(p) and σ(m)) of the substituent on the cinnamyl moiety. A linear correlation was observed at low-medium σ values, but not at high σ values (≥0.7). Next, we explored correlation between λ(em) and φ of 5-17 and computed HOMO and LUMO energy levels of fragments of 5-17, i.e., 8-vinyl 9-Me-adenine (fluorescent molecule), 18, and substituted toluene rings (fluoresence modulators), 19-30. High φ correlated with relatively close LUMO levels of 19-30 and 18 (-0.076 to -0.003 eV). The electron density of LUMO of nitro analogues 9 and 15 is localized on the aryl ring only, which explains their low φ. Calculation of HOMO-LUMO gap of 5-17 enables accurate prediction of the λ(abs) for a planned analogue, and LUMO levels of an aryl moiety vs 8-vinyl 9-Me-adenine, allows the prediction of high or low φ. These findings lay the ground for prediction of fluorescence properties of additional analogues having a similar structure.


Asunto(s)
Adenosina/síntesis química , Diseño de Fármacos , Colorantes Fluorescentes/síntesis química , Sondas de Oligonucleótidos/síntesis química , Adenosina/análogos & derivados , Adenosina/química , Colorantes Fluorescentes/química , Estructura Molecular , Sondas de Oligonucleótidos/química , Teoría Cuántica , Espectrometría de Fluorescencia
19.
J Org Chem ; 78(2): 270-7, 2013 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-23205517

RESUMEN

A new transformation of methylene-bis(phosphonic dichloride) into tetrathiobisphosphonate derivatives is reported. The reaction of methylene-bis(phosphonic dichloride) with 1,2-ethanedithiol in bromoform in the presence of AlCl(3) formed methylene-bis(1,3,2-dithiaphospholane-2-sulfide), which gave rise to O,O'-diester-methylenediphosphonotetrathioate analogues 1a-k upon reaction with phenols and alkyl alcohols in the presence of DBU. Reaction mechanisms are proposed, and all products were characterized by (31)P, (13)C, and (1)H NMR. An X-ray crystal structure was obtained for intermediate 2. The potential of the novel scaffold for selective coordination of metal-ions was examined by coordination of Hg(II) and Pb(II) by 1f, as determined by FT-IR, and chelation of Zn(II), but not Ca(II), by 1b, as determined by (31)P/(1)H NMR. UV-vis measurements of 1g-Ni(II) mixture revealed a 2:1 ligand:metal complex. These derivatives are potential antioxidants, and their ability to inhibit ·OH formation in Fenton reactions was quantified by ESR measurements. Analogue 1g proved to be a most potent antioxidant (IC(50) 53 µM), inhibiting the Cu(I)-catalyzed Fenton reaction at lower concentrations than GSH, ascorbic acid, and EDTA. Analogue 1c inhibited the Fe(II)-catalyzed Fenton reaction at about the same concentrations as ascorbic acid (IC(50) 83 vs 93 µM). In summary, the novel compounds, 1a-k, proved to chelate various borderline/soft Lewis acid metal-ions, and may be useful as antioxidants and metal extractors.


Asunto(s)
Alquenos/química , Alquenos/síntesis química , Antioxidantes/química , Quelantes/química , Cobre/química , Iones/química , Ácidos de Lewis/química , Metales/química , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/síntesis química , Catálisis , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Estructura Molecular
20.
Inorg Chem ; 52(6): 3133-40, 2013 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-23452087

RESUMEN

Metal chelators are potential therapeutic agents for treating diseases such as Wilson's and Alzheimer's where the pathology involves an excess of metal-ions (Cu(II) and Zn(II)/Cu(II)/Fe(II/III), respectively). In addition to the high affinity of the metal-ion to the chelators, metal selectivity of the chelators is essential to achieve the therapeutic goal, that is, the successful removal of excess of harmful metal-ions in a physiological extracellular medium rich in alkali and alkali earth metal-ions. For this purpose, we synthesized a novel chelator, methylenediphosphonotetrathioate (MDPT) which is the tetrathio analogue of methylenediphosphonic acid (MDP). MDPT was synthesized from bis-methylene(phosphonicdichloride) in a 3-step synthesis and a 31% overall yield. MDPT formed a stable complex with Zn(II) (log K = 10.84), which is 10(7) times more stable than the corresponding Ca(II) complex. Moreover, the MDPT-Zn(II) complex was 50-fold more stable than the MDP-Zn(II) complex. In addition, MDPT was found to inhibit the Cu(I)-catalyzed Fenton reaction (IC50 26 µM) 2.5 times more potently than a Fe(II)-catalyzed Fenton reaction, and 2.5 times more potently than EDTA (IC50 64 µM) in the Cu(I)/H2O2 system, as monitored by electron spin resonance (ESR). Furthermore, MDPT was found to be relatively stable in both acidic (pD 1.9, t(½) = 71.5 h) and basic media (pD 12.4, t(½) = 81 h) as monitored by (31)P/(1)H NMR. However, MDPT was not stable in air because of intramolecular oxidation and disulfide formation (33% oxidation after 27 h). In conclusion, MDPT was found to be a water-soluble chelator showing a clear preference to soft/borderline metal-ions and a remarkable selectivity to those metal-ions vs Ca(II) ions. The relative sensitivity of MDPT to oxidation may limit its use; however, the application of MDPT in acidic or basic media will increase its lifetime.


Asunto(s)
Antioxidantes/química , Antioxidantes/síntesis química , Quelantes/química , Quelantes/síntesis química , Compuestos Organotiofosforados/química , Compuestos Organotiofosforados/síntesis química , Ácidos Fosforosos/química , Ácidos Fosforosos/síntesis química , Aire , Calcio/química , Técnicas de Química Sintética , Estabilidad de Medicamentos , Concentración de Iones de Hidrógeno , Radical Hidroxilo/química , Oxidación-Reducción , Solubilidad , Agua/química , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA