Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nat Chem Biol ; 13(9): 943-950, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28671682

RESUMEN

New antibiotics with novel targets are greatly needed. Bacteria have numerous essential functions, but only a small fraction of such processes-primarily those involved in macromolecular synthesis-are inhibited by current drugs. Targeting metabolic enzymes has been the focus of recent interest, but effective inhibitors have been difficult to identify. We describe a synthetic azetidine derivative, BRD4592, that kills Mycobacterium tuberculosis (Mtb) through allosteric inhibition of tryptophan synthase (TrpAB), a previously untargeted, highly allosterically regulated enzyme. BRD4592 binds at the TrpAB α-ß-subunit interface and affects multiple steps in the enzyme's overall reaction, resulting in inhibition not easily overcome by changes in metabolic environment. We show that TrpAB is required for the survival of Mtb and Mycobacterium marinum in vivo and that this requirement may be independent of an adaptive immune response. This work highlights the effectiveness of allosteric inhibition for targeting proteins that are naturally highly dynamic and that are essential in vivo, despite their apparent dispensability under in vitro conditions, and suggests a framework for the discovery of a next generation of allosteric inhibitors.


Asunto(s)
Antituberculosos , Azetidinas/química , Mycobacterium tuberculosis/enzimología , Bibliotecas de Moléculas Pequeñas , Triptófano Sintasa/antagonistas & inhibidores , Regulación Alostérica , Antituberculosos/síntesis química , Antituberculosos/química , Antituberculosos/farmacología , Azetidinas/farmacología , Sitios de Unión , Cristalografía por Rayos X , Sistemas de Liberación de Medicamentos , Mycobacterium tuberculosis/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
2.
Bioorg Med Chem Lett ; 28(22): 3529-3533, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30316633

RESUMEN

Previous work established a coumarin scaffold as a starting point for inhibition of Mycobacterium tuberculosis (Mtb) FadD32 enzymatic activity. After further profiling of the coumarin inhibitor 4 revealed chemical instability, we discovered that a quinoline ring circumvented this instability and had the advantage of offering additional substitution vectors to further optimize. Ensuing SAR studies gave rise to quinoline-2-carboxamides with potent anti-tubercular activity. Further optimization of ADME/PK properties culminated in 21b that exhibited compelling in vivo efficacy in a mouse model of Mtb infection.


Asunto(s)
Antituberculosos/química , Proteínas Bacterianas/antagonistas & inhibidores , Cumarinas/química , Animales , Antituberculosos/metabolismo , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Proteínas Bacterianas/metabolismo , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Ratones , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/metabolismo , Quinolinas/química , Relación Estructura-Actividad , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
3.
Nat Chem Biol ; 11(6): 416-23, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25894085

RESUMEN

Many drug candidates fail in clinical trials owing to a lack of efficacy from limited target engagement or an insufficient therapeutic index. Minimizing off-target effects while retaining the desired pharmacodynamic (PD) response can be achieved by reduced exposure for drugs that display kinetic selectivity in which the drug-target complex has a longer half-life than off-target-drug complexes. However, though slow-binding inhibition kinetics are a key feature of many marketed drugs, prospective tools that integrate drug-target residence time into predictions of drug efficacy are lacking, hindering the integration of drug-target kinetics into the drug discovery cascade. Here we describe a mechanistic PD model that includes drug-target kinetic parameters, including the on- and off-rates for the formation and breakdown of the drug-target complex. We demonstrate the utility of this model by using it to predict dose response curves for inhibitors of the LpxC enzyme from Pseudomonas aeruginosa in an animal model of infection.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Ácidos Hidroxámicos/farmacología , Treonina/análogos & derivados , Animales , Antibacterianos/química , Antibacterianos/farmacocinética , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/farmacocinética , Cinética , Ratones Endogámicos , Pruebas de Sensibilidad Microbiana , Modelos Biológicos , Estructura Molecular , Unión Proteica , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Treonina/química , Treonina/farmacocinética , Treonina/farmacología , Factores de Tiempo
4.
Bioorg Med Chem ; 24(18): 4008-4015, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27377864

RESUMEN

The structure-activity and structure-kinetic relationships of a series of novel and selective ortho-aminoanilide inhibitors of histone deacetylases (HDACs) 1 and 2 are described. Different kinetic and thermodynamic selectivity profiles were obtained by varying the moiety occupying an 11Å channel leading to the Zn(2+) catalytic pocket of HDACs 1 and 2, two paralogs with a high degree of structural similarity. The design of these novel inhibitors was informed by two ligand-bound crystal structures of truncated hHDAC2. BRD4884 and BRD7232 possess kinetic selectivity for HDAC1 versus HDAC2. We demonstrate that the binding kinetics of HDAC inhibitors can be tuned for individual isoforms in order to modulate target residence time while retaining functional activity and increased histone H4K12 and H3K9 acetylation in primary mouse neuronal cell culture assays. These chromatin modifiers, with tuned binding kinetic profiles, can be used to define the relation between target engagement requirements and the pharmacodynamic response of HDACs in different disease applications.


Asunto(s)
Anilidas/química , Anilidas/farmacología , Histona Desacetilasa 1/antagonistas & inhibidores , Histona Desacetilasa 2/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Acetilación/efectos de los fármacos , Aminación , Animales , Células Cultivadas , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/metabolismo , Histonas/metabolismo , Humanos , Cinética , Ratones , Simulación del Acoplamiento Molecular
5.
Bioorg Med Chem Lett ; 25(16): 3301-6, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26099541

RESUMEN

With increasing emergence of multi-drug resistant infections, there is a dire need for new classes of compounds that act through unique mechanisms. In this work, we describe the discovery and optimization of a novel series of inhibitors of bacterial methionine aminopeptidase (MAP). Through a high-throughput screening campaign, one azepinone amide hit was found that resembled the native peptide substrate and possessed moderate biochemical potency against three bacterial isozymes. X-ray crystallography was used in combination with substrate-based design to direct the rational optimization of analogs with sub-micromolar potency. The novel compounds presented here represent potent broad-spectrum biochemical inhibitors of bacterial MAP and have the potential to lead to the development of new medicines to combat serious multi-drug resistant infections.


Asunto(s)
Antibacterianos/síntesis química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Escherichia coli/efectos de los fármacos , Metionil Aminopeptidasas/antagonistas & inhibidores , Antibacterianos/química , Antibacterianos/farmacología , Azepinas/química , Cristalografía por Rayos X , Diseño de Fármacos , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/química , Escherichia coli/enzimología , Humanos , Concentración 50 Inhibidora , Modelos Moleculares , Relación Estructura-Actividad
6.
Proc Natl Acad Sci U S A ; 109(29): 11663-8, 2012 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-22753474

RESUMEN

Avibactam is a ß-lactamase inhibitor that is in clinical development, combined with ß-lactam partners, for the treatment of bacterial infections comprising gram-negative organisms. Avibactam is a structural class of inhibitor that does not contain a ß-lactam core but maintains the capacity to covalently acylate its ß-lactamase targets. Using the TEM-1 enzyme, we characterized avibactam inhibition by measuring the on-rate for acylation and the off-rate for deacylation. The deacylation off-rate was 0.045 min(-1), which allowed investigation of the deacylation route from TEM-1. Using NMR and MS, we showed that deacylation proceeds through regeneration of intact avibactam and not hydrolysis. Other than TEM-1, four additional clinically relevant ß-lactamases were shown to release intact avibactam after being acylated. We showed that avibactam is a covalent, slowly reversible inhibitor, which is a unique mechanism of inhibition among ß-lactamase inhibitors.


Asunto(s)
Antibacterianos/farmacología , Compuestos de Azabiciclo/farmacología , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Inhibidores de beta-Lactamasas , Acilación/efectos de los fármacos , Antibacterianos/química , Antibacterianos/metabolismo , Compuestos de Azabiciclo/química , Compuestos de Azabiciclo/metabolismo , Descubrimiento de Drogas/métodos , Cinética , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Estructura Molecular , beta-Lactamasas
7.
J Biol Chem ; 288(39): 27960-71, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-23913691

RESUMEN

Avibactam is a non-ß-lactam ß-lactamase inhibitor with a spectrum of activity that includes ß-lactamase enzymes of classes A, C, and selected D examples. In this work acylation and deacylation rates were measured against the clinically important enzymes CTX-M-15, KPC-2, Enterobacter cloacae AmpC, Pseudomonas aeruginosa AmpC, OXA-10, and OXA-48. The efficiency of acylation (k2/Ki) varied across the enzyme spectrum, from 1.1 × 10(1) m(-1)s(-1) for OXA-10 to 1.0 × 10(5) for CTX-M-15. Inhibition of OXA-10 was shown to follow the covalent reversible mechanism, and the acylated OXA-10 displayed the longest residence time for deacylation, with a half-life of greater than 5 days. Across multiple enzymes, acyl enzyme stability was assessed by mass spectrometry. These inhibited enzyme forms were stable to rearrangement or hydrolysis, with the exception of KPC-2. KPC-2 displayed a slow hydrolytic route that involved fragmentation of the acyl-avibactam complex. The identity of released degradation products was investigated, and a possible mechanism for the slow deacylation from KPC-2 is proposed.


Asunto(s)
Compuestos de Azabiciclo/química , Escherichia coli/efectos de los fármacos , beta-Lactamasas/química , Antibacterianos/química , Farmacorresistencia Bacteriana , Enterobacter cloacae/metabolismo , Inhibidores Enzimáticos/química , Escherichia coli/metabolismo , Hidrólisis , Cinética , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Plásmidos/metabolismo , Pseudomonas aeruginosa/metabolismo , Factores de Tiempo
8.
Nature ; 447(7146): 817-22, 2007 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-17568739

RESUMEN

Glutamate racemase is an enzyme essential to the bacterial cell wall biosynthesis pathway, and has therefore been considered as a target for antibacterial drug discovery. We characterized the glutamate racemases of several pathogenic bacteria using structural and biochemical approaches. Here we describe three distinct mechanisms of regulation for the family of glutamate racemases: allosteric activation by metabolic precursors, kinetic regulation through substrate inhibition, and D-glutamate recycling using a d-amino acid transaminase. In a search for selective inhibitors, we identified a series of uncompetitive inhibitors specifically targeting Helicobacter pylori glutamate racemase that bind to a cryptic allosteric site, and used these inhibitors to probe the mechanistic and dynamic features of the enzyme. These structural, kinetic and mutational studies provide insight into the physiological regulation of these essential enzymes and provide a basis for designing narrow-spectrum antimicrobial agents.


Asunto(s)
Isomerasas de Aminoácido/química , Isomerasas de Aminoácido/metabolismo , Bacterias/enzimología , Regulación Alostérica/efectos de los fármacos , Sitio Alostérico/efectos de los fármacos , Isomerasas de Aminoácido/antagonistas & inhibidores , Isomerasas de Aminoácido/genética , Antibacterianos/metabolismo , Antibacterianos/farmacología , Bacterias/patogenicidad , Cristalografía por Rayos X , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Escherichia coli/enzimología , Helicobacter pylori/enzimología , Cinética , Modelos Moleculares , Conformación Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
9.
Ecol Evol ; 13(5): e10046, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37193112

RESUMEN

Africa has undergone a progressive aridification during the last 20 My that presumably impacted organisms and fostered the evolution of life history adaptations. We test the hypothesis that shift to living in ant nests and feeding on ant brood by larvae of phyto-predaceous Lepidochrysops butterflies was an adaptive response to the aridification of Africa that facilitated the subsequent radiation of butterflies in this genus. Using anchored hybrid enrichment we constructed a time-calibrated phylogeny for Lepidochrysops and its closest, non-parasitic relatives in the Euchrysops section (Poloyommatini). We estimated ancestral areas across the phylogeny with process-based biogeographical models and diversification rates relying on time-variable and clade-heterogeneous birth-death models. The Euchrysops section originated with the emerging Miombo woodlands about 22 million years ago (Mya) and spread to drier biomes as they became available in the late Miocene. The diversification of the non-parasitic lineages decreased as aridification intensified around 10 Mya, culminating in diversity decline. In contrast, the diversification of the phyto-predaceous Lepidochrysops lineage proceeded rapidly from about 6.5 Mya when this unusual life history likely first evolved. The Miombo woodlands were the cradle for diversification of the Euchrysops section, and our findings are consistent with the hypothesis that aridification during the Miocene selected for a phyto-predaceous life history in species of Lepidochrysops, with ant nests likely providing caterpillars a safe refuge from fire and a source of food when vegetation was scarce.

10.
Bioorg Med Chem Lett ; 21(18): 5432-5, 2011 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21782427

RESUMEN

An SAR survey at the C-6 benzoxazinone position of a novel scaffold which inhibits bacterial type IIa topoisomerase demonstrates that a range of small electron donating groups (EDG) and electron withdrawing groups (EWG) are tolerated for antibacterial activity. Cyano was identified as a preferred substituent that affords good antibacterial potency while minimizing hERG cardiac channel activity.


Asunto(s)
Bacterias/enzimología , Benzoxazinas/química , ADN-Topoisomerasas de Tipo II/metabolismo , Inhibidores Enzimáticos/farmacología , Piperidinas/farmacología , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , Piperidinas/síntesis química , Piperidinas/química , Estereoisomerismo , Relación Estructura-Actividad
11.
SLAS Discov ; 26(4): 503-517, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33430712

RESUMEN

The aberrant regulation of protein expression and function can drastically alter cellular physiology and lead to numerous pathophysiological conditions such as cancer, inflammatory diseases, and neurodegeneration. The steady-state expression levels of endogenous proteins are controlled by a balance of de novo synthesis rates and degradation rates. Moreover, the levels of activated proteins in signaling cascades can be further modulated by a variety of posttranslational modifications and protein-protein interactions. The field of targeted protein degradation is an emerging area for drug discovery in which small molecules are used to recruit E3 ubiquitin ligases to catalyze the ubiquitination and subsequent degradation of disease-causing target proteins by the proteasome in both a dose- and time-dependent manner. Traditional approaches for quantifying protein level changes in cells, such as Western blots, are typically low throughput with limited quantification, making it hard to drive the rapid development of therapeutics that induce selective, rapid, and sustained protein degradation. In the last decade, a number of techniques and technologies have emerged that have helped to accelerate targeted protein degradation drug discovery efforts, including the use of fluorescent protein fusions and reporter tags, flow cytometry, time-resolved fluorescence energy transfer (TR-FRET), and split luciferase systems. Here we discuss the advantages and disadvantages associated with these technologies and their application to the development and optimization of degraders as therapeutics.


Asunto(s)
Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento , Terapia Molecular Dirigida/métodos , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional , Bibliotecas de Moléculas Pequeñas/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , Células Eucariotas/citología , Células Eucariotas/efectos de los fármacos , Células Eucariotas/metabolismo , Citometría de Flujo/métodos , Humanos , Ligandos , Unión Proteica , Proteolisis/efectos de los fármacos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Espectrometría de Fluorescencia/métodos , Coloración y Etiquetado/métodos , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/efectos de los fármacos
12.
ACS Chem Biol ; 16(11): 2228-2243, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34582690

RESUMEN

The field of targeted protein degradation (TPD) has grown exponentially over the past decade with the goal of developing therapies that mark proteins for destruction leveraging the ubiquitin-proteasome system. One common approach to achieve TPD is to employ a heterobifunctional molecule, termed as a degrader, to recruit the protein target of interest to the E3 ligase machinery. The resultant generation of an intermediary ternary complex (target-degrader-ligase) is pivotal in the degradation process. Understanding the ternary complex geometry offers valuable insight into selectivity, catalytic efficiency, linker chemistry, and rational degrader design. In this study, we utilize hydrogen-deuterium exchange mass spectrometry (HDX-MS) to identify degrader-induced protein-protein interfaces. We then use these data in conjunction with constrained protein docking to build three-dimensional models of the ternary complex. The approach was used to characterize complex formation between the E3 ligase CRBN and the first bromodomain of BRD4, a prominent oncology target. We show marked differences in the ternary complexes formed in solution based on distinct patterns of deuterium uptake for two degraders, CFT-1297 and dBET6. CFT-1297, which exhibited positive cooperativity, altered the deuterium uptake profile revealing the degrader-induced protein-protein interface of the ternary complex. For CFT-1297, the ternary complexes generated by the highest scoring HDX-constrained docking models differ markedly from those observed in the published crystal structures. These results highlight the potential utility of HDX-MS to provide rapidly accessible structural insights into degrader-induced protein-protein interfaces in solution. They further suggest that degrader ternary complexes exhibit significant conformation flexibility and that biologically relevant complexes may well not exhibit the largest interaction surfaces between proteins. Taken together, the results indicate that methods capable of incorporating linker conformation uncertainty may prove an important component in degrader design moving forward. In addition, the development of scoring functions modified to handle interfaces with no evolved complementarity, for example, through consideration of high levels of water infiltration, may prove valuable. Furthermore, the use of crystal structures as validation tools for novel degrader methods needs to be considered with caution.


Asunto(s)
Proteínas de Ciclo Celular/química , Simulación por Computador , Medición de Intercambio de Deuterio , Espectrometría de Masas/métodos , Factores de Transcripción/química , Acetamidas/química , Acetamidas/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Indoles/química , Indoles/farmacología , Modelos Químicos , Modelos Moleculares , Estructura Molecular , Piperidinas/química , Piperidinas/farmacología , Conformación Proteica
13.
Mol Cancer Ther ; 20(8): 1367-1377, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34045230

RESUMEN

Targeted, catalytic degradation of oncoproteins using heterobifunctional small molecules is an attractive modality, particularly for hematologic malignancies, which are often initiated by aberrant transcription factors and are challenging to drug with inhibitors. BRD4, a member of the bromodomain and extraterminal family, is a core transcriptional and epigenetic regulator that recruits the P-TEFb complex, which includes Cdk9 and cyclin T, to RNA polymerase II (pol II). Together, BRD4 and CDK9 phosphorylate serine 2 (pSer2) of heptad repeats in the C-terminal domain of RPB1, the large subunit of pol II, promote transcriptional elongation. Small-molecule degraders of BRD4 have shown encouraging efficacy in preclinical models for several tumor types but less efficacy in other cancers including small-cell lung cancer (SCLC) and pancreatic cancer. Here, we evaluated CFT-2718, a new BRD4-targeting degrader with enhanced catalytic activity and in vivo properties. In vivo, CFT-2718 has significantly greater efficacy than the CDK9 inhibitor dinaciclib in reducing growth of the LX-36 SCLC patient-derived xenograft (PDX) model and performed comparably to dinaciclib in limiting growth of the PNX-001 pancreatic PDX model. In vitro, CFT-2718 reduced cell viability in four SCLC and two pancreatic cancer models. In SCLC models, this activity significantly exceeded that of dinaciclib; furthermore, CFT-2718 selectively increased the expression of cleaved PARP, an indicator of apoptosis. CFT-2718 caused rapid BRD4 degradation and reduced levels of total and pSer2 RPB1 protein. These and other findings suggest that BRD-mediated transcriptional suppression merits further exploration in the setting of SCLC.


Asunto(s)
Antineoplásicos/farmacología , Proteínas de Ciclo Celular/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/farmacología , Factores de Transcripción/metabolismo , Animales , Apoptosis , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones SCID , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Carcinoma Pulmonar de Células Pequeñas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
14.
SLAS Discov ; 26(4): 547-559, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33780296

RESUMEN

Recent advances in targeted protein degradation have enabled chemical hijacking of the ubiquitin-proteasome system to treat disease. The catalytic rate of cereblon (CRBN)-dependent bifunctional degradation activating compounds (BiDAC), which recruit CRBN to a chosen target protein, resulting in its ubiquitination and proteasomal degradation, is an important parameter to consider during the drug discovery process. In this work, an in vitro system was developed to measure the kinetics of BRD4 bromodomain 1 (BD1) ubiquitination by fitting an essential activator kinetic model to these data. The affinities between BiDACs, BD1, and CRBN in the binary complex, ternary complex, and full ubiquitination complex were characterized. Together, this work provides a new tool for understanding and optimizing the catalytic and thermodynamic properties of BiDACs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Bioensayo , Proteínas de Ciclo Celular/metabolismo , Oxindoles/farmacología , Ftalimidas/farmacología , Procesamiento Proteico-Postraduccional , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Sistema Libre de Células/química , Sistema Libre de Células/metabolismo , Células HeLa , Humanos , Cinética , Oxindoles/síntesis química , Ftalimidas/síntesis química , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Unión Proteica , Dominios Proteicos , Proteolisis/efectos de los fármacos , Termodinámica , Factores de Transcripción/química , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/efectos de los fármacos
15.
IUCrJ ; 6(Pt 4): 649-664, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31316809

RESUMEN

Tryptophan biosynthesis is one of the most characterized processes in bacteria, in which the enzymes from Salmonella typhimurium and Escherichia coli serve as model systems. Tryptophan synthase (TrpAB) catalyzes the final two steps of tryptophan biosynthesis in plants, fungi and bacteria. This pyridoxal 5'-phosphate (PLP)-dependent enzyme consists of two protein chains, α (TrpA) and ß (TrpB), functioning as a linear αßßα heterotetrameric complex containing two TrpAB units. The reaction has a complicated, multistep mechanism resulting in the ß-replacement of the hydroxyl group of l-serine with an indole moiety. Recent studies have shown that functional TrpAB is required for the survival of pathogenic bacteria in macrophages and for evading host defense. Therefore, TrpAB is a promising target for drug discovery, as its orthologs include enzymes from the important human pathogens Streptococcus pneumoniae, Legionella pneumophila and Francisella tularensis, the causative agents of pneumonia, legionnaires' disease and tularemia, respectively. However, specific biochemical and structural properties of the TrpABs from these organisms have not been investigated. To fill the important phylogenetic gaps in the understanding of TrpABs and to uncover unique features of TrpAB orthologs to spearhead future drug-discovery efforts, the TrpABs from L. pneumophila, F. tularensis and S. pneumoniae have been characterized. In addition to kinetic properties and inhibitor-sensitivity data, structural information gathered using X-ray crystallo-graphy is presented. The enzymes show remarkable structural conservation, but at the same time display local differences in both their catalytic and allosteric sites that may be responsible for the observed differences in catalysis and inhibitor binding. This functional dissimilarity may be exploited in the design of species-specific enzyme inhibitors.

16.
Org Lett ; 10(12): 2585-8, 2008 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-18489104

RESUMEN

Bioassay-guided fractionation of the methanol extract of the Australian sponge Neopetrosia exigua led to the isolation of exiguaquinol (2), a new pentacyclic hydroquinone that inhibited Helicobacter pylori glutamate racemase (MurI) with an IC(50) of 4.4 microM. Its structure and relative configuration were assigned on the basis of spectroscopic data. Exiguaquinol (2), bearing a novel pentacyclic ring skeleton, is the first natural product to show inhibition of H. pylori MurI. Its protein-ligand modeling is also discussed.


Asunto(s)
Isomerasas de Aminoácido/antagonistas & inhibidores , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/enzimología , Hidroquinonas/aislamiento & purificación , Hidroquinonas/farmacología , Poríferos/química , Animales , Antibacterianos/química , Cristalografía por Rayos X , Hidroquinonas/química , Ligandos , Estructura Molecular , Conformación Proteica
17.
Curr Opin Chem Biol ; 44: 47-55, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29885948

RESUMEN

Targeted protein degradation is an emerging strategy for drug discovery that employs small molecules to catalyze the ubiquitination of target proteins, ultimately causing their degradation by the proteasome. Current degrader designs employ hetero-bivalent molecules to recruit E3 ubiquitin ligases such as VHL, Cereblon, and the IAPs to the target protein to be ubiquitinated. In this review, we describe some of the foundational studies underpinning the use of heterobivalent degraders for targeted protein degradation. We also present a framework for degraders as programmable essential activators of ubiquitin ligase enzymes, connecting their features as catalysts with established enzymology concepts.


Asunto(s)
Descubrimiento de Drogas/métodos , Proteolisis/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/efectos de los fármacos
18.
Chem Sci ; 8(5): 3434-3443, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28507715

RESUMEN

Correlating target engagement with in vivo drug activity remains a central challenge in efforts to improve the efficiency of drug discovery. Previously we described a mechanistic pharmacokinetic-pharmacodynamic (PK/PD) model that used drug-target binding kinetics to successfully predict the in vivo efficacy of antibacterial compounds in models of Pseudomonas aeruginosa and Staphylococcus aureus infection. In the present work we extend this model to quantitatively correlate the engagement of Bruton's tyrosine kinase (Btk) by the covalent inhibitor CC-292 with the ability of this compound to reduce ankle swelling in an animal model of arthritis. The modeling studies include the rate of Btk turnover and reveal the vulnerability of Btk to engagement by CC-292.

20.
Chem Sci ; 7(9): 5945-5954, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27547299

RESUMEN

Drug-target kinetics enable time-dependent changes in target engagement to be quantified as a function of drug concentration. When coupled to drug pharmacokinetics (PK), drug-target kinetics can thus be used to predict in vivo pharmacodynamics (PD). Previously we described a mechanistic PK/PD model that successfully predicted the antibacterial activity of an LpxC inhibitor in a model of Pseudomonas aeruginosa infection. In the present work we demonstrate that the same approach can be used to predict the in vivo activity of an enoyl-ACP reductase (FabI) inhibitor in a model of methicillin-resistant Staphylococcus aureus (MRSA) infection. This is significant because the LpxC inhibitors are cidal, whereas the FabI inhibitors are static. In addition P. aeruginosa is a Gram-negative organism whereas MRSA is Gram-positive. Thus this study supports the general applicability of our modeling approach across antibacterial space.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA