Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 156(1-2): 332-42, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24439386

RESUMEN

The number of imprinted genes in the mammalian genome is predicted to be small, yet we show here, in a survey of 97 traits measured in outbred mice, that most phenotypes display parent-of-origin effects that are partially confounded with family structure. To address this contradiction, using reciprocal F1 crosses, we investigated the effects of knocking out two nonimprinted candidate genes, Man1a2 and H2-ab1, that reside at nonimprinted loci but that show parent-of-origin effects. We show that expression of multiple genes becomes dysregulated in a sex-, tissue-, and parent-of-origin-dependent manner. We provide evidence that nonimprinted genes can generate parent-of-origin effects by interaction with imprinted loci and deduce that the importance of the number of imprinted genes is secondary to their interactions. We propose that this gene network effect may account for some of the missing heritability seen when comparing sibling-based to population-based studies of the phenotypic effects of genetic variants.


Asunto(s)
Ratones/genética , Animales , Perfilación de la Expresión Génica , Impresión Genómica , Ratones Noqueados , Fenotipo , Sitios de Carácter Cuantitativo
2.
Cell ; 154(2): 452-64, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23870131

RESUMEN

Mutations in whole organisms are powerful ways of interrogating gene function in a realistic context. We describe a program, the Sanger Institute Mouse Genetics Project, that provides a step toward the aim of knocking out all genes and screening each line for a broad range of traits. We found that hitherto unpublished genes were as likely to reveal phenotypes as known genes, suggesting that novel genes represent a rich resource for investigating the molecular basis of disease. We found many unexpected phenotypes detected only because we screened for them, emphasizing the value of screening all mutants for a wide range of traits. Haploinsufficiency and pleiotropy were both surprisingly common. Forty-two percent of genes were essential for viability, and these were less likely to have a paralog and more likely to contribute to a protein complex than other genes. Phenotypic data and more than 900 mutants are openly available for further analysis. PAPERCLIP:


Asunto(s)
Técnicas Genéticas , Ratones Noqueados , Fenotipo , Animales , Enfermedad/genética , Modelos Animales de Enfermedad , Femenino , Genes Esenciales , Estudio de Asociación del Genoma Completo , Masculino , Ratones
3.
Brief Bioinform ; 23(4)2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35753701

RESUMEN

Advances in whole-genome sequencing (WGS) promise to enable the accurate and comprehensive structural variant (SV) discovery. Dissecting SVs from WGS data presents a substantial number of challenges and a plethora of SV detection methods have been developed. Currently, evidence that investigators can use to select appropriate SV detection tools is lacking. In this article, we have evaluated the performance of SV detection tools on mouse and human WGS data using a comprehensive polymerase chain reaction-confirmed gold standard set of SVs and the genome-in-a-bottle variant set, respectively. In contrast to the previous benchmarking studies, our gold standard dataset included a complete set of SVs allowing us to report both precision and sensitivity rates of the SV detection methods. Our study investigates the ability of the methods to detect deletions, thus providing an optimistic estimate of SV detection performance as the SV detection methods that fail to detect deletions are likely to miss more complex SVs. We found that SV detection tools varied widely in their performance, with several methods providing a good balance between sensitivity and precision. Additionally, we have determined the SV callers best suited for low- and ultralow-pass sequencing data as well as for different deletion length categories.


Asunto(s)
Benchmarking , Genoma Humano , Animales , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Ratones , Secuenciación Completa del Genoma/métodos
4.
Mol Psychiatry ; 28(6): 2254-2265, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36702864

RESUMEN

The genetic dissection of major depressive disorder (MDD) ranks as one of the success stories of psychiatric genetics, with genome-wide association studies (GWAS) identifying 178 genetic risk loci and proposing more than 200 candidate genes. However, the GWAS results derive from the analysis of cohorts in which most cases are diagnosed by minimal phenotyping, a method that has low specificity. I review data indicating that there is a large genetic component unique to MDD that remains inaccessible to minimal phenotyping strategies and that the majority of genetic risk loci identified with minimal phenotyping approaches are unlikely to be MDD risk loci. I show that inventive uses of biobank data, novel imputation methods, combined with more interviewer diagnosed cases, can identify loci that contribute to the episodic severe shifts of mood, and neurovegetative and cognitive changes that are central to MDD. Furthermore, new theories about the nature and causes of MDD, drawing upon advances in neuroscience and psychology, can provide handles on how best to interpret and exploit genetic mapping results.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/genética , Estudio de Asociación del Genoma Completo/métodos , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple , Sitios Genéticos
5.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34544873

RESUMEN

The biological mechanisms underpinning learning are unclear. Mounting evidence has suggested that adult hippocampal neurogenesis is involved although a causal relationship has not been well defined. Here, using high-resolution genetic mapping of adult neurogenesis, combined with sequencing information, we identify follistatin (Fst) and demonstrate its involvement in learning and adult neurogenesis. We confirmed that brain-specific Fst knockout (KO) mice exhibited decreased hippocampal neurogenesis and demonstrated that FST is critical for learning. Fst KO mice exhibit deficits in spatial learning, working memory, and long-term potentiation (LTP). In contrast, hippocampal overexpression of Fst in KO mice reversed these impairments. By utilizing RNA sequencing and chromatin immunoprecipitation, we identified Asic4 as a target gene regulated by FST and show that Asic4 plays a critical role in learning deficits caused by Fst deletion. Long-term overexpression of hippocampal Fst in C57BL/6 wild-type mice alleviates age-related decline in cognition, neurogenesis, and LTP. Collectively, our study reveals the functions for FST in adult neurogenesis and learning behaviors.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Folistatina/fisiología , Hipocampo/metabolismo , Neurogénesis , Plasticidad Neuronal , Aprendizaje Espacial/fisiología , Canales Iónicos Sensibles al Ácido/genética , Animales , Cognición , Femenino , Potenciación a Largo Plazo , Masculino , Memoria , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sinapsis/fisiología
6.
Am J Hum Genet ; 106(1): 71-91, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31901249

RESUMEN

Gene-environment interactions (GxE) can be fundamental in applications ranging from functional genomics to precision medicine and is a conjectured source of substantial heritability. However, unbiased methods to profile GxE genome-wide are nascent and, as we show, cannot accommodate general environment variables, modest sample sizes, heterogeneous noise, and binary traits. To address this gap, we propose a simple, unifying mixed model for gene-environment interaction (GxEMM). In simulations and theory, we show that GxEMM can dramatically improve estimates and eliminate false positives when the assumptions of existing methods fail. We apply GxEMM to a range of human and model organism datasets and find broad evidence of context-specific genetic effects, including GxSex, GxAdversity, and GxDisease interactions across thousands of clinical and molecular phenotypes. Overall, GxEMM is broadly applicable for testing and quantifying polygenic interactions, which can be useful for explaining heritability and invaluable for determining biologically relevant environments.


Asunto(s)
Interacción Gen-Ambiente , Marcadores Genéticos , Trastornos Mentales/genética , Trastornos Mentales/patología , Modelos Genéticos , Herencia Multifactorial/genética , Adulto , Animales , Simulación por Computador , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Fenómica , Fenotipo , Ratas
7.
BMC Genomics ; 23(1): 260, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379194

RESUMEN

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused global disruption of human health and activity. Being able to trace the early outbreak of SARS-CoV-2 within a locality can inform public health measures and provide insights to contain or prevent viral transmission. Investigation of the transmission history requires efficient sequencing methods and analytic strategies, which can be generally useful in the study of viral outbreaks. METHODS: The County of Los Angeles (hereafter, LA County) sustained a large outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To learn about the transmission history, we carried out surveillance viral genome sequencing to determine 142 viral genomes from unique patients seeking care at the University of California, Los Angeles (UCLA) Health System. 86 of these genomes were from samples collected before April 19, 2020. RESULTS: We found that the early outbreak in LA County, as in other international air travel hubs, was seeded by multiple introductions of strains from Asia and Europe. We identified a USA-specific strain, B.1.43, which was found predominantly in California and Washington State. While samples from LA County carried the ancestral B.1.43 genome, viral genomes from neighboring counties in California and from counties in Washington State carried additional mutations, suggesting a potential origin of B.1.43 in Southern California. We quantified the transmission rate of SARS-CoV-2 over time, and found evidence that the public health measures put in place in LA County to control the virus were effective at preventing transmission, but might have been undermined by the many introductions of SARS-CoV-2 into the region. CONCLUSION: Our work demonstrates that genome sequencing can be a powerful tool for investigating outbreaks and informing the public health response. Our results reinforce the critical need for the USA to have coordinated inter-state responses to the pandemic.


Asunto(s)
COVID-19 , COVID-19/epidemiología , Brotes de Enfermedades , Genómica , Humanos , Los Angeles/epidemiología , SARS-CoV-2/genética
8.
PLoS Biol ; 17(6): e3000333, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31220077

RESUMEN

Developing new software tools for analysis of large-scale biological data is a key component of advancing modern biomedical research. Scientific reproduction of published findings requires running computational tools on data generated by such studies, yet little attention is presently allocated to the installability and archival stability of computational software tools. Scientific journals require data and code sharing, but none currently require authors to guarantee the continuing functionality of newly published tools. We have estimated the archival stability of computational biology software tools by performing an empirical analysis of the internet presence for 36,702 omics software resources published from 2005 to 2017. We found that almost 28% of all resources are currently not accessible through uniform resource locators (URLs) published in the paper they first appeared in. Among the 98 software tools selected for our installability test, 51% were deemed "easy to install," and 28% of the tools failed to be installed at all because of problems in the implementation. Moreover, for papers introducing new software, we found that the number of citations significantly increased when authors provided an easy installation process. We propose for incorporation into journal policy several practical solutions for increasing the widespread installability and archival stability of published bioinformatics software.


Asunto(s)
Biología Computacional/métodos , Difusión de la Información/métodos , Almacenamiento y Recuperación de la Información/métodos , Investigación Biomédica , Bases de Datos Factuales , Humanos , Internet , Programas Informáticos/tendencias
9.
PLoS Comput Biol ; 17(5): e1008915, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34019542

RESUMEN

Genetic predisposition for complex traits often acts through multiple tissues at different time points during development. As a simple example, the genetic predisposition for obesity could be manifested either through inherited variants that control metabolism through regulation of genes expressed in the brain, or that control fat storage through dysregulation of genes expressed in adipose tissue, or both. Here we describe a statistical approach that leverages tissue-specific expression quantitative trait loci (eQTLs) corresponding to tissue-specific genes to prioritize a relevant tissue underlying the genetic predisposition of a given individual for a complex trait. Unlike existing approaches that prioritize relevant tissues for the trait in the population, our approach probabilistically quantifies the tissue-wise genetic contribution to the trait for a given individual. We hypothesize that for a subgroup of individuals the genetic contribution to the trait can be mediated primarily through a specific tissue. Through simulations using the UK Biobank, we show that our approach can predict the relevant tissue accurately and can cluster individuals according to their tissue-specific genetic architecture. We analyze body mass index (BMI) and waist to hip ratio adjusted for BMI (WHRadjBMI) in the UK Biobank to identify subgroups of individuals whose genetic predisposition act primarily through brain versus adipose tissue, and adipose versus muscle tissue, respectively. Notably, we find that these individuals have specific phenotypic features beyond BMI and WHRadjBMI that distinguish them from random individuals in the data, suggesting biological effects of tissue-specific genetic contribution for these traits.


Asunto(s)
Herencia Multifactorial , Sitios de Carácter Cuantitativo , Tejido Adiposo/metabolismo , Algoritmos , Teorema de Bayes , Índice de Masa Corporal , Encéfalo/metabolismo , Biología Computacional , Simulación por Computador , Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Modelos Genéticos , Obesidad/genética , Obesidad/patología , Especificidad de Órganos , Fenotipo , Polimorfismo de Nucleótido Simple , Programas Informáticos , Distribución Tisular
10.
PLoS Genet ; 15(4): e1008009, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30951530

RESUMEN

Recent and classical work has revealed biologically and medically significant subtypes in complex diseases and traits. However, relevant subtypes are often unknown, unmeasured, or actively debated, making automated statistical approaches to subtype definition valuable. We propose reverse GWAS (RGWAS) to identify and validate subtypes using genetics and multiple traits: while GWAS seeks the genetic basis of a given trait, RGWAS seeks to define trait subtypes with distinct genetic bases. Unlike existing approaches relying on off-the-shelf clustering methods, RGWAS uses a novel decomposition, MFMR, to model covariates, binary traits, and population structure. We use extensive simulations to show that modelling these features can be crucial for power and calibration. We validate RGWAS in practice by recovering a recently discovered stress subtype in major depression. We then show the utility of RGWAS by identifying three novel subtypes of metabolic traits. We biologically validate these metabolic subtypes with SNP-level tests and a novel polygenic test: the former recover known metabolic GxE SNPs; the latter suggests subtypes may explain substantial missing heritability. Crucially, statins, which are widely prescribed and theorized to increase diabetes risk, have opposing effects on blood glucose across metabolic subtypes, suggesting the subtypes have potential translational value.


Asunto(s)
Estudio de Asociación del Genoma Completo/métodos , Modelos Genéticos , Herencia Multifactorial , Fenotipo , Algoritmos , Glucemia/efectos de los fármacos , Glucemia/genética , Análisis por Conglomerados , Simulación por Computador , Enfermedad Coronaria/sangre , Enfermedad Coronaria/tratamiento farmacológico , Enfermedad Coronaria/genética , Trastorno Depresivo Mayor/clasificación , Trastorno Depresivo Mayor/genética , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Lípidos/sangre , Polimorfismo de Nucleótido Simple , Estado Prediabético/genética , Sitios de Carácter Cuantitativo
11.
Am J Hum Genet ; 103(1): 89-99, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29979983

RESUMEN

Methods that estimate SNP-based heritability and genetic correlations from genome-wide association studies have proven to be powerful tools for investigating the genetic architecture of common diseases and exposing unexpected relationships between disorders. Many relevant studies employ a case-control design, yet most methods are primarily geared toward analyzing quantitative traits. Here we investigate the validity of three common methods for estimating SNP-based heritability and genetic correlation between diseases. We find that the phenotype-correlation-genotype-correlation (PCGC) approach is the only method that can estimate both quantities accurately in the presence of important non-genetic risk factors, such as age and sex. We extend PCGC to work with arbitrary genetic architectures and with summary statistics that take the case-control sampling into account, and we demonstrate that our new method, PCGC-s, accurately estimates both SNP-based heritability and genetic correlations and can be applied to large datasets without requiring individual-level genotypic or phenotypic information. Finally, we use PCGC-s to estimate the genetic correlation between schizophrenia and bipolar disorder and demonstrate that previous estimates are biased, partially due to incorrect handling of sex as a strong risk factor.


Asunto(s)
Enfermedad/genética , Polimorfismo de Nucleótido Simple/genética , Estudios de Casos y Controles , Estudios de Asociación Genética/métodos , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Humanos , Modelos Genéticos , Fenotipo
12.
Am J Med Genet B Neuropsychiatr Genet ; 186(1): 16-27, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33576176

RESUMEN

Genotype imputation across populations of mixed ancestry is critical for optimal discovery in large-scale genome-wide association studies (GWAS). Methods for direct imputation of GWAS summary-statistics were previously shown to be practically as accurate as summary statistics produced after raw genotype imputation, while incurring orders of magnitude lower computational burden. Given that direct imputation needs a precise estimation of linkage-disequilibrium (LD) and that most of the methods using a small reference panel for example, ~2,500-subject coming from the 1000 Genome-Project, there is a great need for much larger and more diverse reference panels. To accurately estimate the LD needed for an exhaustive analysis of any cosmopolitan cohort, we developed DISTMIX2. DISTMIX2: (a) uses a much larger and more diverse reference panel compared to traditional reference panels, and (b) can estimate weights of ethnic-mixture based solely on Z-scores, when allele frequencies are not available. We applied DISTMIX2 to GWAS summary-statistics from the psychiatric genetic consortium (PGC). DISTMIX2 uncovered signals in numerous new regions, with most of these findings coming from the rarer variants. Rarer variants provide much sharper location for the signals compared with common variants, as the LD for rare variants extends over a lower distance than for common ones. For example, while the original PGC post-traumatic stress disorder GWAS found only 3 marginal signals for common variants, we now uncover a very strong signal for a rare variant in PKN2, a gene associated with neuronal and hippocampal development. Thus, DISTMIX2 provides a robust and fast (re)imputation approach for most psychiatric GWAS-studies.


Asunto(s)
Estudio de Asociación del Genoma Completo/normas , Trastornos Mentales/diagnóstico , Trastornos Mentales/genética , Polimorfismo de Nucleótido Simple , Estudios de Cohortes , Frecuencia de los Genes , Humanos , Desequilibrio de Ligamiento , Fenotipo , Estándares de Referencia , Programas Informáticos
13.
Psychol Med ; 50(5): 793-798, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-30935430

RESUMEN

BACKGROUND: The Psychiatric Genomics Consortium (PGC) has made major advances in the molecular etiology of MDD, confirming that MDD is highly polygenic. Pathway enrichment results from PGC meta-analyses can also be used to help inform molecular drug targets. Prior to any knowledge of molecular biomarkers for MDD, drugs targeting molecular pathways (MPs) proved successful in treating MDD. It is possible that examining polygenicity within specific MPs implicated in MDD can further refine molecular drug targets. METHODS: Using a large case-control GWAS based on low-coverage whole genome sequencing (N = 10 640) in Han Chinese women, we derived polygenic risk scores (PRS) for MDD and for MDD specific to each of over 300 MPs previously shown to be relevant to psychiatric diagnoses. We then identified sets of PRSs, accounting for critical covariates, significantly predictive of case status. RESULTS: Over and above global MDD polygenic risk, polygenic risk within the GO: 0017144 drug metabolism pathway significantly predicted recurrent depression after multiple testing correction. Secondary transcriptomic analysis suggests that among genes in this pathway, CYP2C19 (family of Cytochrome P450) and CBR1 (Carbonyl Reductase 1) might be most relevant to MDD. Within the cases, pathway-based risk was additionally associated with age at onset of MDD. CONCLUSIONS: Results indicate that pathway-based risk might inform etiology of recurrent major depression. Future research should examine whether polygenicity of the drug metabolism gene pathway has any association with clinical presentation or treatment response. We discuss limitations to the generalizability of these preliminary findings, and urge replication in future research.


Asunto(s)
Trastorno Depresivo Mayor/genética , Herencia Multifactorial , Adulto , Edad de Inicio , Pueblo Asiatico/genética , Estudios de Casos y Controles , China , Trastorno Depresivo Mayor/tratamiento farmacológico , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Recurrencia , Factores de Riesgo
14.
Mol Cell ; 45(4): 447-58, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22264824

RESUMEN

A substantial amount of organismal complexity is thought to be encoded by enhancers which specify the location, timing, and levels of gene expression. In mammals there are more enhancers than promoters which are distributed both between and within genes. Here we show that activated, intragenic enhancers frequently act as alternative tissue-specific promoters producing a class of abundant, spliced, multiexonic poly(A)(+) RNAs (meRNAs) which reflect the host gene's structure. meRNAs make a substantial and unanticipated contribution to the complexity of the transcriptome, appearing as alternative isoforms of the host gene. The low protein-coding potential of meRNAs suggests that many meRNAs may be byproducts of enhancer activation or underlie as-yet-unidentified RNA-encoded functions. Distinguishing between meRNAs and mRNAs will transform our interpretation of dynamic changes in transcription both at the level of individual genes and of the genome as a whole.


Asunto(s)
Elementos de Facilitación Genéticos/fisiología , Regulación de la Expresión Génica , Regiones Promotoras Genéticas/fisiología , Animales , Células Cultivadas , Células Eritroides , Ratones , Poli A , ARN/química , ARN/fisiología , Isoformas de ARN/química , ARN Mensajero/química , ARN Mensajero/fisiología , Transcriptoma
15.
Am J Med Genet B Neuropsychiatr Genet ; 183(8): 454-463, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32954640

RESUMEN

Genetic signal detection in genome-wide association studies (GWAS) is enhanced by pooling small signals from multiple Single Nucleotide Polymorphism (SNP), for example, across genes and pathways. Because genes are believed to influence traits via gene expression, it is of interest to combine information from expression Quantitative Trait Loci (eQTLs) in a gene or genes in the same pathway. Such methods, widely referred to as transcriptomic wide association studies (TWAS), already exist for gene analysis. Due to the possibility of eliminating most of the confounding effects of linkage disequilibrium (LD) from TWAS gene statistics, pathway TWAS methods would be very useful in uncovering the true molecular basis of psychiatric disorders. However, such methods are not yet available for arbitrarily large pathways/gene sets. This is possibly due to the quadratic (as a function of the number of SNPs) computational burden for computing LD across large chromosomal regions. To overcome this obstacle, we propose JEPEGMIX2-P, a novel TWAS pathway method that (a) has a linear computational burden, (b) uses a large and diverse reference panel (33 K subjects), (c) is competitive (adjusts for background enrichment in gene TWAS statistics), and (d) is applicable as-is to ethnically mixed-cohorts. To underline its potential for increasing the power to uncover genetic signals over the commonly used nontranscriptomics methods, for example, MAGMA, we applied JEPEGMIX2-P to summary statistics of most large meta-analyses from Psychiatric Genetics Consortium (PGC). While our work is just the very first step toward clinical translation of psychiatric disorders, PGC anorexia results suggest a possible avenue for treatment.


Asunto(s)
Biología Computacional/métodos , Marcadores Genéticos , Herencia Multifactorial , Polimorfismo de Nucleótido Simple , Trastornos Psicóticos/patología , Sitios de Carácter Cuantitativo , Transcriptoma , Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Fenotipo , Pronóstico , Trastornos Psicóticos/genética , Factores de Riesgo , Transducción de Señal , Programas Informáticos
16.
Hum Mol Genet ; 26(20): 3869-3882, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29016847

RESUMEN

The discovery of genetic variants influencing sleep patterns can shed light on the physiological processes underlying sleep. As part of a large clinical sequencing project, WGS500, we sequenced a family in which the two male children had severe developmental delay and a dramatically disturbed sleep-wake cycle, with very long wake and sleep durations, reaching up to 106-h awake and 48-h asleep. The most likely causal variant identified was a novel missense variant in the X-linked GRIA3 gene, which has been implicated in intellectual disability. GRIA3 encodes GluA3, a subunit of AMPA-type ionotropic glutamate receptors (AMPARs). The mutation (A653T) falls within the highly conserved transmembrane domain of the ion channel gate, immediately adjacent to the analogous residue in the Grid2 (glutamate receptor) gene, which is mutated in the mouse neurobehavioral mutant, Lurcher. In vitro, the GRIA3(A653T) mutation stabilizes the channel in a closed conformation, in contrast to Lurcher. We introduced the orthologous mutation into a mouse strain by CRISPR-Cas9 mutagenesis and found that hemizygous mutants displayed significant differences in the structure of their activity and sleep compared to wild-type littermates. Typically, mice are polyphasic, exhibiting multiple sleep bouts of sleep several minutes long within a 24-h period. The Gria3A653T mouse showed significantly fewer brief bouts of activity and sleep than the wild-types. Furthermore, Gria3A653T mice showed enhanced period lengthening under constant light compared to wild-type mice, suggesting an increased sensitivity to light. Our results suggest a role for GluA3 channel activity in the regulation of sleep behavior in both mice and humans.


Asunto(s)
Discapacidad Intelectual/genética , Mutación Puntual , Receptores AMPA/genética , Receptores AMPA/metabolismo , Trastornos del Sueño-Vigilia/genética , Adulto , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
18.
PLoS Genet ; 12(2): e1005765, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26866486

RESUMEN

As our understanding of genetics has improved, genome-wide association studies (GWAS) have identified numerous variants associated with lifestyle behaviours and health outcomes. However, what is sometimes overlooked is the possibility that genetic variants identified in GWAS of disease might reflect the effect of modifiable risk factors as well as direct genetic effects. We discuss this possibility with illustrative examples from tobacco and alcohol research, in which genetic variants that predict behavioural phenotypes have been seen in GWAS of diseases known to be causally related to these behaviours. This consideration has implications for the interpretation of GWAS findings.


Asunto(s)
Ambiente , Estudio de Asociación del Genoma Completo , Alcohol Deshidrogenasa/genética , Etanol/efectos adversos , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Análisis de la Aleatorización Mendeliana , Factores de Riesgo , Fumar/efectos adversos
19.
PLoS Genet ; 12(5): e1006065, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27171145

RESUMEN

[This corrects the article DOI: 10.1371/journal.pgen.1005765.].

20.
Nat Rev Neurosci ; 14(5): 365-76, 2013 05.
Artículo en Inglés | MEDLINE | ID: mdl-23571845

RESUMEN

A study with low statistical power has a reduced chance of detecting a true effect, but it is less well appreciated that low power also reduces the likelihood that a statistically significant result reflects a true effect. Here, we show that the average statistical power of studies in the neurosciences is very low. The consequences of this include overestimates of effect size and low reproducibility of results. There are also ethical dimensions to this problem, as unreliable research is inefficient and wasteful. Improving reproducibility in neuroscience is a key priority and requires attention to well-established but often ignored methodological principles.


Asunto(s)
Neurociencias , Tamaño de la Muestra , Humanos , Probabilidad , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA