Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 29(10)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38792145

RESUMEN

The Cupressaceae family includes species considered to be medicinal. Their essential oil is used for headaches, colds, cough, and bronchitis. Cedar trees like Chamaecyparis lawsoniana (C. lawsoniana) are commonly found in urban areas. We investigated whether C. lawsoniana exerts some of its effects by modifying airway smooth muscle (ASM) contractility. The leaves of C. lawsoniana (363 g) were pulverized mechanically, and extracts were obtained by successive maceration 1:10 (w:w) with methanol/CHCl3. Guinea pig tracheal rings were contracted with KCl, tetraethylammonium (TEA), histamine (HIS), or carbachol (Cch) in organ baths. In the Cch experiments, tissues were pre-incubated with D-600, an antagonist of L-type voltage-dependent Ca2+ channels (L-VDCC) before the addition of C. lawsoniana. Interestingly, at different concentrations, C. lawsoniana diminished the tracheal contractions induced by KCl, TEA, HIS, and Cch. In ASM cells, C. lawsoniana significantly diminished L-type Ca2+ currents. ASM cells stimulated with Cch produced a transient Ca2+ peak followed by a sustained plateau maintained by L-VDCC and store-operated Ca2+ channels (SOCC). C. lawsoniana almost abolished this last response. These results show that C. lawsoniana, and its active metabolite quercetin, relax the ASM by inhibiting the L-VDCC and SOCC; further studies must be performed to obtain the complete set of metabolites of the extract and study at length their pharmacological properties.


Asunto(s)
Calcio , Chamaecyparis , Contracción Muscular , Músculo Liso , Extractos Vegetales , Quercetina , Tráquea , Animales , Cobayas , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Contracción Muscular/efectos de los fármacos , Quercetina/farmacología , Quercetina/química , Tráquea/efectos de los fármacos , Tráquea/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Chamaecyparis/química , Calcio/metabolismo , Masculino , Bloqueadores de los Canales de Calcio/farmacología , Histamina/metabolismo , Canales de Calcio Tipo L/metabolismo , Hojas de la Planta/química
2.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38069210

RESUMEN

The tumor microenvironment (TME) is characterized by an acidic pH and low oxygen concentrations. Hypoxia induces neoplastic cell evasion of the immune surveillance, rapid DNA repair, metabolic reprogramming, and metastasis, mainly as a response to the hypoxic inducible factors (HIFs). Likewise, cancer cells increase matrix metalloproteinases' (MMPs) expression in response to TME conditions, allowing them to migrate from the primary tumor to different tissues. Since HIFs and MMPs are augmented in the hypoxic TME, it is easy to consider that HIFs participate directly in their expression regulation. However, not all MMPs have a hypoxia response element (HRE)-HIF binding site. Moreover, different transcription factors and signaling pathways activated in hypoxia conditions through HIFs or in a HIF-independent manner participate in MMPs' transcription. The present review focuses on MMPs' expression in normal and hypoxic conditions, considering HIFs and a HIF-independent transcription control. In addition, since the hypoxic TME causes resistance to anticancer conventional therapy, treatment approaches using MMPs as a target alone, or in combination with other therapies, are also discussed.


Asunto(s)
Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Hipoxia de la Célula/genética , Microambiente Tumoral/genética , Hipoxia/genética , Hipoxia/metabolismo , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
3.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37895016

RESUMEN

It has been observed that plasmatic concentrations of estrogens, progesterone, or both correlate with symptoms in asthmatic women. Fluctuations in female sex steroid concentrations during menstrual periods are closely related to asthma symptoms, while menopause induces severe physiological changes that might require hormonal replacement therapy (HRT), that could influence asthma symptoms in these women. Late-onset asthma (LOA) has been categorized as a specific asthmatic phenotype that includes menopausal women and novel research regarding therapeutic alternatives that might provide relief to asthmatic women suffering LOA warrants more thorough and comprehensive analysis. Therefore, the present review proposes phytoestrogens as a promising HRT that might provide these females with relief for both their menopause and asthma symptoms. Besides their well-recognized anti-inflammatory and antioxidant capacities, phytoestrogens activate estrogen receptors and promote mild hormone-like responses that benefit postmenopausal women, particularly asthmatics, constituting therefore a very attractive potential therapy largely due to their low toxicity and scarce side effects.


Asunto(s)
Asma , Fitoestrógenos , Femenino , Humanos , Fitoestrógenos/uso terapéutico , Terapia de Reemplazo de Estrógeno , Terapia de Reemplazo de Hormonas , Menopausia/fisiología , Estrógenos/uso terapéutico , Asma/tratamiento farmacológico
4.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37175587

RESUMEN

To preserve ionic homeostasis (primarily Ca2+, K+, Na+, and Cl-), in the airway smooth muscle (ASM) numerous transporters (channels, exchangers, and pumps) regulate the influx and efflux of these ions. Many of intracellular processes depend on continuous ionic permeation, including exocytosis, contraction, metabolism, transcription, fecundation, proliferation, and apoptosis. These mechanisms are precisely regulated, for instance, through hormonal activity. The lipophilic nature of steroidal hormones allows their free transit into the cell where, in most cases, they occupy their cognate receptor to generate genomic actions. In the sense, estrogens can stimulate development, proliferation, migration, and survival of target cells, including in lung physiology. Non-genomic actions on the other hand do not imply estrogen's intracellular receptor occupation, nor do they initiate transcription and are mostly immediate to the stimulus. Among estrogen's non genomic responses regulation of calcium homeostasis and contraction and relaxation processes play paramount roles in ASM. On the other hand, disruption of calcium homeostasis has been closely associated with some ASM pathological mechanism. Thus, this paper intends to summarize the effects of estrogen on ionic handling proteins in ASM. The considerable diversity, range and power of estrogens regulates ionic homeostasis through genomic and non-genomic mechanisms.


Asunto(s)
Calcio , Miocitos del Músculo Liso , Calcio/metabolismo , Miocitos del Músculo Liso/metabolismo , Contracción Muscular/fisiología , Músculo Liso/metabolismo , Canales Iónicos/metabolismo , Estrógenos/metabolismo
5.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36674652

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disease in older individuals worldwide. Pharmacological treatment for such a disease consists of drugs such as monoamine oxidase B (MAO-B) inhibitors to increase dopamine concentration in the brain. However, such drugs have adverse reactions that limit their use for extended periods; thus, the design of less toxic and more efficient compounds may be explored. In this context, cheminformatics and computational chemistry have recently contributed to developing new drugs and the search for new therapeutic targets. Therefore, through a data-driven approach, we used cheminformatic tools to find and optimize novel compounds with pharmacological activity against MAO-B for treating PD. First, we retrieved from the literature 3316 original articles published between 2015-2021 that experimentally tested 215 natural compounds against PD. From such compounds, we built a pharmacological network that showed rosmarinic acid, chrysin, naringenin, and cordycepin as the most connected nodes of the network. From such compounds, we performed fingerprinting analysis and developed evolutionary libraries to obtain novel derived structures. We filtered these compounds through a docking test against MAO-B and obtained five derived compounds with higher affinity and lead likeness potential. Then we evaluated its antioxidant and pharmacokinetic potential through a docking analysis (NADPH oxidase and CYP450) and physiologically-based pharmacokinetic (PBPK modeling). Interestingly, only one compound showed dual activity (antioxidant and MAO-B inhibitors) and pharmacokinetic potential to be considered a possible candidate for PD treatment and further experimental analysis.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Anciano , Enfermedad de Parkinson/tratamiento farmacológico , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/uso terapéutico , Inhibidores de la Monoaminooxidasa/química , Relación Estructura-Actividad , Enfermedades Neurodegenerativas/tratamiento farmacológico , Antioxidantes/farmacología , Monoaminooxidasa/metabolismo
6.
Int J Mol Sci ; 23(2)2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35055119

RESUMEN

The health scourge imposed on humanity by the COVID-19 pandemic seems not to recede. This fact warrants refined and novel ideas analyzing different aspects of the illness. One such aspect is related to the observation that most COVID-19 casualties were older males, a tendency also noticed in the epidemics of SARS-CoV in 2003 and the Middle East respiratory syndrome in 2012. This gender-related difference in the COVID-19 death toll might be directly involved with testosterone (TEST) and its plasmatic concentration in men. TEST has been demonstrated to provide men with anti-inflammatory and immunological advantages. As the plasmatic concentration of this androgen decreases with age, the health benefit it confers also diminishes. Low plasmatic levels of TEST can be determinant in the infection's outcome and might be related to a dysfunctional cell Ca2+ homeostasis. Not only does TEST modulate the activity of diverse proteins that regulate cellular calcium concentrations, but these proteins have also been proven to be necessary for the replication of many viruses. Therefore, we discuss herein how TEST regulates different Ca2+-handling proteins in healthy tissues and propose how low TEST concentrations might facilitate the replication of the SARS-CoV-2 virus through the lack of modulation of the mechanisms that regulate intracellular Ca2+ concentrations.


Asunto(s)
COVID-19/metabolismo , COVID-19/mortalidad , Testosterona/metabolismo , Factores de Edad , Anciano , Envejecimiento/metabolismo , Animales , COVID-19/etiología , Señalización del Calcio , Humanos , Inflamación/metabolismo , Masculino , Morbilidad
7.
Int J Mol Sci ; 23(8)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35456985

RESUMEN

Theophylline (3-methyxanthine) is a historically prominent drug used to treat respiratory diseases, alone or in combination with other drugs. The rapid onset of the COVID-19 pandemic urged the development of effective pharmacological treatments to directly attack the development of new variants of the SARS-CoV-2 virus and possess a therapeutical battery of compounds that could improve the current management of the disease worldwide. In this context, theophylline, through bronchodilatory, immunomodulatory, and potentially antiviral mechanisms, is an interesting proposal as an adjuvant in the treatment of COVID-19 patients. Nevertheless, it is essential to understand how this compound could behave against such a disease, not only at a pharmacodynamic but also at a pharmacokinetic level. In this sense, the quickest approach in drug discovery is through different computational methods, either from network pharmacology or from quantitative systems pharmacology approaches. In the present review, we explore the possibility of using theophylline in the treatment of COVID-19 patients since it seems to be a relevant candidate by aiming at several immunological targets involved in the pathophysiology of the disease. Theophylline down-regulates the inflammatory processes activated by SARS-CoV-2 through various mechanisms, and herein, they are discussed by reviewing computational simulation studies and their different applications and effects.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Antivirales/farmacocinética , Antivirales/uso terapéutico , Humanos , Simulación del Acoplamiento Molecular , Pandemias , SARS-CoV-2 , Teofilina/farmacología , Teofilina/uso terapéutico
8.
Int J Mol Sci ; 22(11)2021 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-34067243

RESUMEN

The COVID-19 pandemic has established an unparalleled necessity to rapidly find effective treatments for the illness; unfortunately, no specific treatment has been found yet. As this is a new emerging chaotic situation, already existing drugs have been suggested to ameliorate the infection of SARS-CoV-2. The consumption of caffeine has been suggested primarily because it improves exercise performance, reduces fatigue, and increases wakefulness and awareness. Caffeine has been proven to be an effective anti-inflammatory and immunomodulator. In airway smooth muscle, it has bronchodilator effects mainly due to its activity as a phosphodiesterase inhibitor and adenosine receptor antagonist. In addition, a recent published document has suggested the potential antiviral activity of this drug using in silico molecular dynamics and molecular docking; in this regard, caffeine might block the viral entrance into host cells by inhibiting the formation of a receptor-binding domain and the angiotensin-converting enzyme complex and, additionally, might reduce viral replication by the inhibition of the activity of 3-chymotrypsin-like proteases. Here, we discuss how caffeine through certain mechanisms of action could be beneficial in SARS-CoV-2. Nevertheless, further studies are required for validation through in vitro and in vivo models.


Asunto(s)
Antiinflamatorios/farmacología , Antivirales/farmacología , COVID-19/dietoterapia , Cafeína/farmacología , Reposicionamiento de Medicamentos/métodos , Músculo Liso/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , COVID-19/metabolismo , COVID-19/fisiopatología , Humanos , Factores Inmunológicos/farmacología , Simulación de Dinámica Molecular , Músculo Liso/metabolismo , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo
9.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34360637

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by increased activation of fibroblasts/myofibroblasts. Previous reports have shown that IPF fibroblasts are resistant to apoptosis, but the mechanisms remain unclear. Since inhibition of the mitochondrial permeability transition pore (mPTP) has been implicated in the resistance to apoptosis, in this study, we analyzed the role of mitochondrial function and the mPTP on the apoptosis resistance of IPF fibroblasts under basal conditions and after mitomycin C-induced apoptosis. We measured the release of cytochrome c, mPTP opening, mitochondrial calcium release, oxygen consumption, mitochondrial membrane potential, ADP/ATP ratio, ATP concentration, and mitochondrial morphology. We found that IPF fibroblasts were resistant to mitomycin C-induced apoptosis and that calcium, a well-established activator of mPTP, is decreased as well as the release of pro-apoptotic proteins such as cytochrome c. Likewise, IPF fibroblasts showed decreased mitochondrial function, while mPTP was less sensitive to ionomycin-induced opening. Although IPF fibroblasts did not present changes in the mitochondrial membrane potential, we found a fragmented mitochondrial network with scarce, thinned, and disordered mitochondria with reduced ATP levels. Our findings demonstrate that IPF fibroblasts are resistant to mitomycin C-induced apoptosis and that altered mPTP opening contributes to this resistance. In addition, IPF fibroblasts show mitochondrial dysfunction evidenced by a decrease in respiratory parameters.


Asunto(s)
Apoptosis , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Mitocondrias/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Adenosina Trifosfato/metabolismo , Calcio/metabolismo , Citocromos c/metabolismo , Fibroblastos/patología , Humanos , Fibrosis Pulmonar Idiopática/etiología , Fibrosis Pulmonar Idiopática/patología , Ionomicina , Mitocondrias/patología , Mitomicina , Oxígeno/metabolismo , Cultivo Primario de Células
10.
Respir Res ; 20(1): 130, 2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31234835

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is an age-related, progressive and lethal disease, whose pathogenesis is associated with fibroblasts/myofibroblasts foci that produce excessive extracellular matrix accumulation in lung parenchyma. Hypoxia has been described as a determinant factor in its development and progression. However, the role of distinct members of this pathway is not completely described. METHODS: By western blot, quantitative PCR, Immunohistochemistry and Immunocitochemistry were evaluated, the expression HIF alpha subunit isoforms 1, 2 & 3 as well, as their role in myofibroblast differentiation in lung tissue and fibroblast cell lines derived from IPF patients. RESULTS: Hypoxia signaling pathway was found very active in lungs and fibroblasts from IPF patients, as demonstrated by the abundance of alpha subunits 1 and 2, which further correlated with the increased expression of myofibroblast marker αSMA. In contrast, HIF-3α showed reduced expression associated with its promoter hypermethylation. CONCLUSIONS: This study lends further support to the involvement of hypoxia in the pathogenesis of IPF, and poses HIF-3α expression as a potential negative regulator of these phenomena.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/biosíntesis , Fibrosis Pulmonar Idiopática/metabolismo , Miofibroblastos/metabolismo , Proteínas Represoras/biosíntesis , Proteínas Reguladoras de la Apoptosis/genética , Línea Celular , Expresión Génica , Humanos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Miofibroblastos/patología , Proteínas Represoras/genética
11.
Planta Med ; 85(1): 14-23, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30036890

RESUMEN

Mammea-type coumarins are a particular type of secondary metabolites biosynthesized by the tropical rainforest tree Calophyllum Brasiliense, which is distributed from South America to Mexico. Particularly, mammea A/BA and A/BB (alone or as a mixture) possess biological properties such as cytotoxic and antitumoral activities, however, most of its molecular targets remain unknown. In this context, novel bioinformatic approaches, such as network pharmacology analysis, have been successfully used in herbal medicine to accelerate research in this field, and the support of experimental validations has been shown to be quite robust. In the present study, we performed a network pharmacology analysis to assess the possible molecular biological networks that interact with mammea A/BA and A/BB. Moreover, we validated the most relevant networks experimentally in vitro on K562 cancer cells. The results of the network pharmacology analysis indicate that mammea A/BA and A/BB interacts with cell death, PI3K/AKT, MAPK, Ras, and cancer pathways. The in vitro model shows that mammea A/BA and A/BB induce apoptosis through the overexpression of the proapoptotic proteins Bax and Bak, disrupt the autophagic flux as seen by the cytosolic accumulation of LC3-II and p62, disrupting the mitochondria ultrastructure and concomitantly increase the intracellular calcium concentration. Additionally, docking analysis predicted a possible interaction with a rapamycin-binding domain of mTOR. In conclusion, we validated network pharmacology analysis and report, for the first time, that mammea A/BA and A/BB coumarins induce apoptosis through the inhibition of the autophagic flux, possibly interacting with mTOR.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Calophyllum/química , Cumarinas/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Sitios de Unión , Biología Computacional , Cumarinas/química , Cumarinas/aislamiento & purificación , Humanos , Células K562 , Transducción de Señal , Biología de Sistemas/métodos , Serina-Treonina Quinasas TOR/química
12.
Int J Mol Sci ; 19(7)2018 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-30041485

RESUMEN

Melatonin (MEL) is an ancient molecule, broadly distributed in nature from unicellular to multicellular species. MEL is an indoleamine that acts on a wide variety of cellular targets regulating different physiological functions. This review is focused on the role played by this molecule in the regulation of the circadian rhythms in crayfish. In these species, information about internal and external time progression might be transmitted by the periodical release of MEL and other endocrine signals acting through the pacemaker. We describe documented and original evidence in support of this hypothesis that also suggests that the rhythmic release of MEL contributes to the reinforcement of the temporal organization of nocturnal or diurnal circadian oscillators. Finally, we discuss how MEL might coordinate functions that converge in the performance of complex behaviors, such as the agonistic responses to establish social dominance status in Procambarus clarkii and the burrowing behavior in the secondary digging crayfish P. acanthophorus.


Asunto(s)
Astacoidea/fisiología , Ritmo Circadiano , Melatonina/metabolismo , Animales , Astacoidea/metabolismo , Conducta Animal
13.
Mediators Inflamm ; 2016: 5972302, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27445440

RESUMEN

Tumor necrosis factor alpha (TNF-α) is a potent proinflammatory cytokine that plays a significant role in the pathogenesis of asthma by inducing hyperresponsiveness and airway remodeling. TNF-α diminishes the L-type voltage dependent Ca(2+) channel (L-VDCC) current in cardiac myocytes, an observation that seems paradoxical. In guinea pig sensitized tracheas KCl responses were lower than in control tissues. Serum from sensitized animals (Ser-S) induced the same phenomenon. In tracheal myocytes from nonsensitized (NS) and sensitized (S) guinea pigs, an L-VDCC current (ICa) was observed and diminished by Ser-S. The same decrease was detected in NS myocytes incubated with TNF-α, pointing out that this cytokine might be present in Ser-S. We observed that a small-molecule inhibitor of TNF-α (SMI-TNF) and a TNF-α receptor 1 (TNFR1) antagonist (WP9QY) reversed ICa decrease induced by Ser-S in NS myocytes, confirming the former hypothesis. U0126 (a blocker of ERK 1/2 kinase) also reverted the decrease in ICa. Neither cycloheximide (a protein synthesis inhibitor) nor actinomycin D (a transcription inhibitor) showed any effect on the TNF-α-induced ICa reduction. We found that CaV1.2 and CaV1.3 mRNA and proteins were expressed in tracheal myocytes and that sensitization did not modify them. In cardiac myocytes, ERK 1/2 phosphorylates two sites of the L-VDCC, augmenting or decreasing ICa; we postulate that, in guinea pig tracheal smooth muscle, TNF-α diminishes ICa probably by phosphorylating the L-VDCC site that reduces its activity through the ERK1/2 MAP kinase pathway.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Animales , Butadienos/farmacología , Células Cultivadas , Cicloheximida/farmacología , Dactinomicina/farmacología , Cobayas , Células Musculares/efectos de los fármacos , Células Musculares/metabolismo , Nitrilos/farmacología , Péptidos Cíclicos/farmacología , Tráquea/citología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
14.
Int J Mol Sci ; 17(6)2016 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-27314332

RESUMEN

In adulthood, differentiation of precursor cells into neurons continues in several brain structures as well as in the olfactory neuroepithelium. Isolated precursors allow the study of the neurodevelopmental process in vitro. The aim of this work was to determine whether the expression of functional Voltage-Activated Ca(2+) Channels (VACC) is dependent on the neurodevelopmental stage in neuronal cells obtained from the human olfactory epithelium of a single healthy donor. The presence of channel-forming proteins in Olfactory Sensory Neurons (OSN) was demonstrated by immunofluorescent labeling, and VACC functioning was assessed by microfluorometry and the patch-clamp technique. VACC were immunodetected only in OSN. Mature neurons responded to forskolin with a five-fold increase in Ca(2+). By contrast, in precursor cells, a subtle response was observed. The involvement of VACC in the precursors' response was discarded for the absence of transmembrane inward Ca(2+) movement evoked by step depolarizations. Data suggest differential expression of VACC in neuronal cells depending on their developmental stage and also that the expression of these channels is acquired by OSN during maturation, to enable specialized functions such as ion movement triggered by membrane depolarization. The results support that VACC in OSN could be considered as a functional marker to study neurodevelopment.


Asunto(s)
Canales de Calcio/metabolismo , Células Neuroepiteliales/metabolismo , Neurogénesis , Neuronas Receptoras Olfatorias/metabolismo , Esquizofrenia/metabolismo , Biomarcadores/metabolismo , Canales de Calcio/genética , Células Cultivadas , Femenino , Humanos , Células Neuroepiteliales/citología , Neuronas Receptoras Olfatorias/citología , Esquizofrenia/diagnóstico
15.
Pflugers Arch ; 467(4): 767-77, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24872164

RESUMEN

In vascular smooth muscle, it has been described that testosterone (TES) produces relaxation by blocking L-type Ca(2+) channels. Recently, we found that L-type Ca(2+) and store-operated Ca(2+) (SOC) channels are the main membranal structures that provide extracellular Ca(2+) for carbachol (CCh)-induced contraction in airway smooth muscle (ASM). We studied the possible interactions between L-type and SOC channels in TES-induced relaxation in guinea pig ASM. TES (10, 32, 100, and 178 µM) induced a complete relaxation of CCh-precontracted tracheal smooth muscle, and indomethacin partially inhibited this response. In single myocytes, the KCl-induced intracellular Ca(2+) increase ([Ca(2+)]i) was decreased by 32 and completely blocked by 100 nM TES. This androgen (32 and 100 µM) significantly diminished (~25 and 49 %, respectively) the capacitative Ca(2+) entry. Myocytes stimulated with CCh produced a transient Ca(2+) peak followed by a sustained plateau. D-600 was added during the plateau phase, and a partial diminution (~35 %) was observed. A greater decrease (~78 %) was seen when 2-aminoethyl diphenylborinate (2-APB, SOC antagonist) was used. The combination of both drugs completely abolished the Ca(2+) plateau induced by CCh. TES (100 µM) also completely abolished the CCh-induced Ca(2+) plateau. Indomethacin significantly diminished this effect of TES. PGE2 and butaprost proportionally decreased the Ca(2+) plateau as indomethacin blocked it. Sarcoplasmic reticulum refilling was partially, dependently, and significantly diminished by TES. We concluded that TES-induced relaxation involves blockade of L-type Ca(2+) channels at nanomolar and SOC channels at micromolar concentration and PGE2 seems to be also involved in this phenomenon.


Asunto(s)
Señalización del Calcio , Dinoprostona/farmacología , Relajación Muscular , Miocitos del Músculo Liso/metabolismo , Testosterona/farmacología , Tráquea/metabolismo , Alprostadil/análogos & derivados , Alprostadil/farmacología , Animales , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/metabolismo , Células Cultivadas , Cobayas , Indometacina/farmacología , Masculino , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/fisiología , Tráquea/citología , Tráquea/fisiología
16.
Int J Mol Med ; 53(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38038161

RESUMEN

Schizophrenia (SZ) is a multifactorial disorder characterized by volume reduction in gray and white matter, oxidative stress, neuroinflammation, altered neurotransmission, as well as molecular deficiencies such as punctual mutation in Disrupted­in­Schizophrenia 1 protein. In this regard, it is essential to understand the underlying molecular disturbances to determine the pathophysiological mechanisms of the disease. The signaling pathways activated by G protein­coupled receptors (GPCRs) are key molecular signaling pathways altered in SZ. Convenient models need to be designed and validated to study these processes and mechanisms at the cellular level. Cultured olfactory stem cells are used to investigate neural molecular and cellular alterations related to the pathophysiology of SZ. Multipotent human olfactory stem cells are undifferentiated and express GPCRs involved in numerous physiological functions such as proliferation, differentiation and bioenergetics. The use of olfactory stem cells obtained from patients with SZ may identify alterations in GPCR signaling that underlie dysfunctional processes in both undifferentiated and specialized neurons or derived neuroglia. The present review aimed to analyze the role of GPCRs and their signaling in the pathophysiology of SZ. Culture of olfactory epithelial cells constitutes a suitable model to study SZ and other psychiatric disorders at the cellular level.


Asunto(s)
Esquizofrenia , Humanos , Esquizofrenia/genética , Esquizofrenia/metabolismo , Células Neuroepiteliales/metabolismo , Neuronas/metabolismo , Receptores Acoplados a Proteínas G , Células Madre/metabolismo
17.
Mol Cell Endocrinol ; 590: 112273, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38763427

RESUMEN

High serum estrogen concentrations are associated with asthma development and severity, suggesting a link between estradiol and airway hyperresponsiveness (AHR). 17ß-estradiol (E2) has non-genomic effects via Ca2+ regulatory mechanisms; however, its effect on the plasma membrane Ca2+-ATPases (PMCA1 and 4) and sarcoplasmic reticulum Ca2+-ATPase (SERCA) is unknown. Hence, in the present study, we aim to demonstrate if E2 favors AHR by increasing intracellular Ca2+ concentrations in guinea pig airway smooth muscle (ASM) through a mechanism involving Ca2+-ATPases. In guinea pig ASM, Ca2+ microfluorometry, muscle contraction, and Western blot were evaluated. Then, we performed molecular docking analysis between the estrogens and Ca2+ ATPases. In tracheal rings, E2 produced AHR to carbachol. In guinea pig myocytes, acute exposure to physiological levels of E2 modified the transient Ca2+ peak induced by caffeine to a Ca2+ plateau. The incubation with PMCA inhibitors (lanthanum and carboxyeosin, CE) partially reversed the E2-induced sustained plateau in the caffeine response. In contrast, cyclopiazonic acid (SERCA inhibitor), U-0126 (an inhibitor of ERK 1/2), and choline chloride did not modify the Ca2+ plateau produced by E2. The mitochondrial uniporter activity and the capacitative Ca2+ entry were unaffected by E2. In guinea pig ASM, Western blot analysis demonstrated PMCA1 and PMCA4 expression. The results from the docking modeling demonstrate that E2 binds to both plasma membrane ATPases. In guinea pig tracheal smooth muscle, inhibiting the PMCA with CE, induced hyperresponsiveness to carbachol. 17ß-estradiol produces hyperresponsiveness by inhibiting the PMCA in the ASM and could be one of the mechanisms responsible for the increase in asthmatic crisis in women.


Asunto(s)
Calcio , Estradiol , Simulación del Acoplamiento Molecular , ATPasas Transportadoras de Calcio de la Membrana Plasmática , Animales , Cobayas , Estradiol/farmacología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Calcio/metabolismo , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Masculino , Tráquea/efectos de los fármacos , Tráquea/metabolismo , Contracción Muscular/efectos de los fármacos , Hipersensibilidad Respiratoria/inducido químicamente , Hipersensibilidad Respiratoria/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Carbacol/farmacología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo
18.
Life (Basel) ; 13(7)2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37511987

RESUMEN

This study aimed to explore the effects of raloxifene (Rx) and estradiol (E2) on prothrombin time (PT), partial thromboplastin time (APTT), coagulation factors (VII, X, XI), and fibrinogen concentrations in rats. Female rats were ovariectomized 11 days prior to starting the treatment. Afterward, they received Rx or E2 (1, 10, 100, and 1000 µg/kg) or propylene glycol (0.3 mL; vehicle, V) subcutaneously for 3 consecutive days. Plasma was collected to measure the hemostatic parameters. Rx significantly increased PT (8%, at 1000 µg/kg; p < 0.05) and APTT at all doses evaluated (32, 70, 67, 30%; p < 0.05, respectively). Rx (1, 10, 100, and 1000 µg/kg) decreased the activity of factor VII by -20, -40, -37, and -17% (p < 0.05), respectively, and E2 increased it by 9, 34, 52, and 29%. Rx reduced factor X activity at 10 and 100 µg/kg doses (-30, and -30% p < 0.05), and E2 showed an increment of 24% with 1000 µg/kg dose only. Additionally, Rx (1, 10, 100 µg/kg) diminished FXI activity (-71, -62, -66; p < 0.05), E2 (1 and 10 µg/kg) in -60 and -38, respectively (p < 0.05), and Rx (1000 µg/kg) produced an increment of 29% (p < 0.05) in fibrinogen concentration, but not E2. Our findings suggest that raloxifene has a protective effect on hemostasis in rats.

19.
Cells ; 12(23)2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38067152

RESUMEN

The function of the circadian cycle is to determine the natural 24 h biological rhythm, which includes physiological, metabolic, and hormonal changes that occur daily in the body. This cycle is controlled by an internal biological clock that is present in the body's tissues and helps regulate various processes such as sleeping, eating, and others. Interestingly, animal models have provided enough evidence to assume that the alteration in the circadian system leads to the appearance of numerous diseases. Alterations in breathing patterns in lung diseases can modify oxygenation and the circadian cycles; however, the response mechanisms to hypoxia and their relationship with the clock genes are not fully understood. Hypoxia is a condition in which the lack of adequate oxygenation promotes adaptation mechanisms and is related to several genes that regulate the circadian cycles, the latter because hypoxia alters the production of melatonin and brain physiology. Additionally, the lack of oxygen alters the expression of clock genes, leading to an alteration in the regularity and precision of the circadian cycle. In this sense, hypoxia is a hallmark of a wide variety of lung diseases. In the present work, we intended to review the functional repercussions of hypoxia in the presence of asthma, chronic obstructive sleep apnea, lung cancer, idiopathic pulmonary fibrosis, obstructive sleep apnea, influenza, and COVID-19 and its repercussions on the circadian cycles.


Asunto(s)
Enfermedades Pulmonares , Apnea Obstructiva del Sueño , Animales , Humanos , Ritmo Circadiano/genética , Hipoxia , Relojes Biológicos/fisiología
20.
Front Mol Biosci ; 9: 918789, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720130

RESUMEN

Cancer is still one of the leading causes of death worldwide. This great mortality is due to its late diagnosis when the disease is already at advanced stages. Although the efforts made to develop more effective treatments, around 90% of cancer deaths are due to metastasis that confers a systemic character to the disease. Likewise, matrix metalloproteinases (MMPs) are endopeptidases that participate in all the events of the metastatic process. MMPs' augmented concentrations and an increased enzymatic activity have been considered bad prognosis markers of the disease. Therefore, synthetic inhibitors have been created to block MMPs' enzymatic activity. However, they have been ineffective in addition to causing considerable side effects. On the other hand, nanotechnology offers the opportunity to formulate therapeutic agents that can act directly on a target cell, avoiding side effects and improving the diagnosis, follow-up, and treatment of cancer. The goal of the present review is to discuss novel nanotechnological strategies in which MMPs are used with theranostic purposes and as therapeutic targets to control cancer progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA