Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Cell Mol Life Sci ; 79(2): 88, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35067832

RESUMEN

Junctional adhesion molecule (JAM)-A is a cell adhesion receptor localized at epithelial cell-cell contacts with enrichment at the tight junctions. Its role during cell-cell contact formation and epithelial barrier formation has intensively been studied. In contrast, its role during collective cell migration is largely unexplored. Here, we show that JAM-A regulates collective cell migration of polarized epithelial cells. Depletion of JAM-A in MDCK cells enhances the motility of singly migrating cells but reduces cell motility of cells embedded in a collective by impairing the dynamics of cryptic lamellipodia formation. This activity of JAM-A is observed in cells grown on laminin and collagen-I but not on fibronectin or vitronectin. Accordingly, we find that JAM-A exists in a complex with the laminin- and collagen-I-binding α3ß1 integrin. We also find that JAM-A interacts with tetraspanins CD151 and CD9, which both interact with α3ß1 integrin and regulate α3ß1 integrin activity in different contexts. Mapping experiments indicate that JAM-A associates with α3ß1 integrin and tetraspanins CD151 and CD9 through its extracellular domain. Similar to depletion of JAM-A, depletion of either α3ß1 integrin or tetraspanins CD151 and CD9 in MDCK cells slows down collective cell migration. Our findings suggest that JAM-A exists with α3ß1 integrin and tetraspanins CD151 and CD9 in a functional complex to regulate collective cell migration of polarized epithelial cells.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Integrina alfa3beta1/metabolismo , Tetraspanina 24/metabolismo , Tetraspanina 29/metabolismo , Animales , Moléculas de Adhesión Celular/antagonistas & inhibidores , Moléculas de Adhesión Celular/genética , Línea Celular , Movimiento Celular/efectos de los fármacos , Perros , Doxorrubicina/farmacología , Humanos , Molécula A de Adhesión de Unión/antagonistas & inhibidores , Molécula A de Adhesión de Unión/genética , Células de Riñón Canino Madin Darby , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
2.
Cell Mol Life Sci ; 78(2): 645-660, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32322926

RESUMEN

The cellular protein homeostasis (proteostasis) network responds effectively to insults. In a functional screen in C. elegans, we recently identified the gene receptor-mediated endocytosis 8 (rme-8; human ortholog: DNAJC13) as a component of the proteostasis network. Accumulation of aggregation-prone proteins, such as amyloid-ß 42 (Aß), α-synuclein, or mutant Cu/Zn-superoxide dismutase (SOD1), were aggravated upon the knockdown of rme-8/DNAJC13 in C. elegans and in human cell lines, respectively. DNAJC13 is involved in endosomal protein trafficking and associated with the retromer and the WASH complex. As both complexes have been linked to autophagy, we investigated the role of DNAJC13 in this degradative pathway. In knockdown and overexpression experiments, DNAJC13 acts as a positive modulator of autophagy. In contrast, the overexpression of the Parkinson's disease-associated mutant DNAJC13(N855S) did not enhance autophagy. Reduced DNAJC13 levels affected ATG9A localization at and its transport from the recycling endosome. As a consequence, ATG9A co-localization at LC3B-positive puncta under steady-state and autophagy-induced conditions is impaired. These data demonstrate a novel function of RME-8/DNAJC13 in cellular homeostasis by modulating ATG9A trafficking and autophagy.


Asunto(s)
Autofagia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Chaperonas Moleculares/metabolismo , Proteostasis , Animales , Caenorhabditis elegans/citología , Células HEK293 , Células HeLa , Humanos , Agregado de Proteínas
3.
PLoS Pathog ; 15(2): e1007590, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30802273

RESUMEN

Subnuclear promyelocytic leukemia (PML) nuclear bodies (NBs) are targeted by many DNA viruses after nuclear delivery. PML protein is essential for formation of PML NBs. Sp100 and Small Ubiquitin-Like Modifier (SUMO) are also permanently residing within PML NBs. Often, large DNA viruses disassemble and reorganize PML NBs to counteract their intrinsic antiviral activity and support establishment of infection. However, human papillomavirus (HPV) requires PML protein to retain incoming viral DNA in the nucleus for subsequent efficient transcription. In contrast, Sp100 was identified as a restriction factor for HPV. These findings suggested that PML NBs are important regulators of early stages of the HPV life cycle. Nuclear delivery of incoming HPV DNA requires mitosis. Viral particles are retained within membrane-bound transport vesicles throughout mitosis. The viral genome is released from transport vesicles by an unknown mechanism several hours after nuclear envelope reformation. The minor capsid protein L2 mediates intracellular transport by becoming transmembranous in the endocytic compartment. Herein, we tested our hypothesis that PML protein is recruited to incoming viral genome prior to egress from transport vesicles. High-resolution microscopy revealed that PML protein, SUMO-1, and Sp100 are recruited to incoming viral genomes, rather than viral genomes being targeted to preformed PML NBs. Differential immunofluorescent staining suggested that PML protein and SUMO-1 associated with transport vesicles containing viral particles prior to egress, implying that recruitment is likely mediated by L2 protein. In contrast, Sp100 recruitment to HPV-harboring PML NBs occurred after release of viral genomes from transport vesicles. The delayed recruitment of Sp100 is specific for HPV-associated PML NBs. These data suggest that the virus continuously resides within a protective environment until the transport vesicle breaks down in late G1 phase and imply that HPV might modulate PML NB assembly to achieve establishment of infection and the shift to viral maintenance.


Asunto(s)
Papillomaviridae/genética , Papillomaviridae/metabolismo , Proteína de la Leucemia Promielocítica/metabolismo , Antígenos Nucleares/metabolismo , Autoantígenos/metabolismo , Proteínas de la Cápside , Núcleo Celular , Genoma Viral , Humanos , Cuerpos de Inclusión Intranucleares , Espacio Intranuclear , Proteínas Nucleares , Papillomaviridae/patogenicidad , Proteína de la Leucemia Promielocítica/fisiología , Proteína SUMO-1/metabolismo , Factores de Transcripción , Proteínas Supresoras de Tumor , Replicación Viral
4.
Med Microbiol Immunol ; 209(4): 447-459, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32535702

RESUMEN

Tetraspanins are master organizers of the cell membrane. Recent evidence suggests that tetraspanins themselves may become crowded by virus particles and that these crowds/aggregates co-internalize with the viral particles. Using microscopy, we studied human papillomavirus (HPV) type 16-dependent aggregates on the cell surface of tetraspanin overexpressing keratinocytes. We find that aggregates are (1) rich in at least two different tetraspanins, (2) three-dimensional architectures extending up to several micrometers into the cell, and (3) decorated intracellularly by filamentous actin. Moreover, in cells not overexpressing tetraspanins, we note that obscurin-like protein 1 (OBSL1), which is thought to be a cytoskeletal adaptor, associates with filamentous actin. We speculate that HPV contact with the cell membrane could trigger the formation of a large tetraspanin web. This web may couple the virus contact site to the intracellular endocytic actin machinery, possibly involving the cytoskeletal adaptor protein OBSL1. Functionally, such a tetraspanin web could serve as a virus entry platform, which is co-internalized with the virus particle.


Asunto(s)
Actinas/fisiología , Proteínas del Citoesqueleto/fisiología , Papillomavirus Humano 16/fisiología , Tetraspanina 24/fisiología , Tetraspanina 30/fisiología , Endocitosis , Células HaCaT/virología , Células HeLa/ultraestructura , Células HeLa/virología , Células Hep G2/virología , Humanos , Microscopía Confocal , Microscopía Electrónica , Infecciones por Papillomavirus/virología , Plaquinas/fisiología , Virión/fisiología , Virión/ultraestructura , Internalización del Virus
5.
Med Microbiol Immunol ; 209(4): 461-471, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32385608

RESUMEN

Human papillomaviruses (HPV) are causative agents of various tumours such as cervical cancer. HPV binding to the cell surface of keratinocytes leads to virus endocytosis at tetraspanin enriched microdomains. Complex interactions of the capsid proteins with host proteins as well as ADAM17-dependent ERK1/2 signal transduction enable the entry platform assembly of the oncogenic HPV type 16. Here, we studied the importance of tetraspanin CD9, also known as TSPAN29, in HPV16 infection of different epithelial cells. We found that both overexpression and loss of the tetraspanin decreased infection rates in cells with low endogenous CD9 levels, while reduction of CD9 expression in keratinocytes that exhibit high-CD9 protein amounts, led to an increase of infection. Therefore, we concluded that low-CD9 supports infection. Moreover, we found that changes in CD9 amounts affect the shedding of the ADAM17 substrate transforming growth factor alpha (TGFα) and the downstream phosphorylation of ERK. These effects correlate with those on infection rates suggesting that a specific CD9 optimum promotes ADAM17 activity, ERK signalling and virus infection. Together, our findings implicate that CD9 regulates HPV16 infection through the modulation of ADAM17 sheddase activity.


Asunto(s)
Proteína ADAM17/metabolismo , Sistema de Señalización de MAP Quinasas , Infecciones por Papillomavirus/metabolismo , Tetraspanina 29/metabolismo , Proteína ADAM17/genética , Endocitosis , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HaCaT , Células HeLa , Papillomavirus Humano 16 , Humanos , Queratinocitos/virología , Infecciones por Papillomavirus/virología , Tetraspanina 29/genética , Factor de Crecimiento Transformador alfa/metabolismo , Internalización del Virus
6.
Med Microbiol Immunol ; 208(3-4): 531-542, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31004199

RESUMEN

As an immune evasion mechanism, cytomegaloviruses (CMVs) have evolved proteins that interfere with cell surface trafficking of MHC class-I (MHC-I) molecules to tone down recognition by antiviral CD8 T cells. This interference can affect the trafficking of recently peptide-loaded MHC-I from the endoplasmic reticulum to the cell surface, thus modulating the presentation of viral peptides, as well as the recycling of pre-existing cell surface MHC-I, resulting in reduction of the level of overall MHC-I cell surface expression. Murine cytomegalovirus (mCMV) was paradigmatic in that it led to the discovery of this immune evasion strategy of CMVs. Members of its m02-m16 gene family code for type-I transmembrane glycoproteins, proven or predicted, most of which carry cargo sorting motifs in their cytoplasmic, C-terminal tail. For the m06 gene product m06 (gp48), the cargo has been identified as being MHC-I, which is linked by m06 to cellular adapter proteins AP-1A and AP-3A through the dileucine motif EPLARLL. Both APs are involved in trans-Golgi network (TGN) cargo sorting and, based on transfection studies, their engagement by the dileucine motif was proposed to be absolutely required to prevent MHC-I exposure at the cell surface. Here, we have tested this prediction in an infection system with the herein newly described recombinant virus mCMV-m06AA, in which the dileucine motif is destroyed by replacing EPLARLL with EPLARAA. This mutation has a phenotype in that the transition of m06-MHC-I complexes from early endosomes (EE) to late endosomes (LE)/lysosomes for degradation is blocked. Consistent with the binding of the MHC-I α-chain to the luminal domain of m06, the m06-mediated disposal of MHC-I did not require the ß2m chain of mature MHC-I. Unexpectedly, however, disconnecting MHC-I cargo from AP-1A/3A by the motif mutation in m06 had no notable rescuing impact on overall cell surface MHC-I, though it resulted in some improvement of the presentation of viral antigenic peptides by recently peptide-loaded MHC-I. Thus, the current view on the mechanism by which m06 mediates immune evasion needs to be revised. While the cargo sorting motif is critically involved in the disposal of m06-bound MHC-I in the endosomal/lysosomal pathway at the stage of EE to LE transition, this motif-mediated disposal is not the critical step by which m06 causes immune evasion. We rather propose that engagement of AP-1A/3A by the cargo sorting motif in m06 routes the m06-MHC-I complexes into the endosomal pathway and thereby detracts them from the constitutive cell surface transport.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Evasión Inmune , Muromegalovirus/crecimiento & desarrollo , Muromegalovirus/inmunología , Proteínas Virales/metabolismo , Factores de Virulencia/metabolismo , Animales , Células Cultivadas , Endosomas/metabolismo , Lisosomas/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Unión Proteica , Transporte de Proteínas
7.
FASEB J ; 31(4): 1421-1433, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28031320

RESUMEN

CD63 is a ubiquitously expressed member of the tetraspanin superfamily. Using a mating-based split-ubiquitin-yeast 2-hybrid system, pull-down experiments, total internal reflection fluorescence microscopy, Förster resonance energy transfer, and biotinylation assays, we found that CD63 interacts with human organic cation transporter 2 (hOCT2), which transports endogenous and exogenous substrates, such as neurotransmitters and drugs in several epithelial cells. CD63 overexpression affects cellular localization of hOCT2 expressed in human embryonic kidney (HEK)293 cells. Studies with CD63-knockout mice indicate that in renal proximal tubules, CD63 determines the insertion of the mouse ortholog of the transporter into the proper membrane domain and mediates transporter regulation by trafficking processes. In polarized Madin-Darby kidney canine kidney (MDCK) epithelial cells, CD63 and hOCT2 colocalize with the small GTPase Rab4, which controls the rapid recycling from sorting endosomes back to the cell surface. Suitable negative and positive control experiments were performed for each experimental approach. Empty vector transfected cells and wild-type mice were used as control. CD63 seems to play a role in the recycling of hOCT2 from endosomes to the basolateral membrane in polarized epithelia. These data indicate that CD63 has a previously uncharacterized function in regulating trafficking of specific membrane proteins in polarized cells.-Schulze, U., Brast, S., Grabner, A., Albiker, C., Snieder, B., Holle, S., Schlatter, E., Schröter, R., Pavenstädt, H., Herrmann, E., Lambert, C., Spoden, G. A., Florin, L., Saftig, P., Ciarimboli, G. Tetraspanin CD63 controls basolateral sorting of organic cation transporter 2 in renal proximal tubules.


Asunto(s)
Túbulos Renales Proximales/metabolismo , Proteínas de Transporte de Catión Orgánico/metabolismo , Tetraspanina 30/metabolismo , Animales , Membrana Celular/metabolismo , Perros , Endosomas/metabolismo , Células Epiteliales/metabolismo , Células HEK293 , Humanos , Túbulos Renales Proximales/citología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos C57BL , Transportador 2 de Cátion Orgánico , Unión Proteica , Transporte de Proteínas , Tetraspanina 30/genética , Proteínas de Unión al GTP rab4/metabolismo
8.
Int J Mol Sci ; 19(10)2018 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-30279342

RESUMEN

Tetraspanins are suggested to regulate the composition of cell membrane components and control intracellular transport, which leaves them vulnerable to utilization by pathogens such as human papillomaviruses (HPV) and cytomegaloviruses (HCMV) to facilitate host cell entry and subsequent infection. In this study, by means of cellular depletion, the cluster of differentiation (CD) tetraspanins CD9, CD63, and CD151 were found to reduce HPV16 infection in HeLa cells by 50 to 80%. Moreover, we tested recombinant proteins or peptides of specific tetraspanin domains on their effect on the most oncogenic HPV type, HPV16, and HCMV. We found that the C-terminal tails of CD63 and CD151 significantly inhibited infections of both HPV16 and HCMV. Although CD9 was newly identified as a key cellular factor for HPV16 infection, the recombinant CD9 C-terminal peptide had no effect on infection. Based on the determined half-maximal inhibitory concentration (IC50), we classified CD63 and CD151 C-terminal peptides as moderate to potent inhibitors of HPV16 infection in HeLa and HaCaT cells, and in EA.hy926, HFF (human foreskin fibroblast) cells, and HEC-LTT (human endothelial cell-large T antigen and telomerase) cells for HCMV, respectively. These results indicate that HPV16 and HCMV share similar cellular requirements for their entry into host cells and reveal the necessity of the cytoplasmic CD151 and CD63 C-termini in virus infections. Furthermore, this highlights the suitability of these peptides for functional investigation of tetraspanin domains and as inhibitors of pathogen infections.


Asunto(s)
Infecciones por Citomegalovirus/virología , Citomegalovirus/fisiología , Papillomavirus Humano 16/fisiología , Tetraspaninas/antagonistas & inhibidores , Citomegalovirus/efectos de los fármacos , Células HeLa , Papillomavirus Humano 16/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Masculino , Péptidos/farmacología , Tetraspaninas/química , Tetraspaninas/metabolismo , Internalización del Virus
9.
J Virol ; 90(14): 6430-42, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27147745

RESUMEN

UNLABELLED: Human cytomegalovirus (HCMV), a betaherpesvirus, can cause life-threatening disease in immunocompromised individuals. Viral envelope glycoproteins that mediate binding to and penetration into target cells have been identified previously. In contrast, cellular proteins supporting HCMV during entry are largely unknown. In order to systematically identify host genes affecting initial steps of HCMV infection, a targeted RNA interference screen of 96 cellular genes was performed in endothelial cells by use of a virus strain expressing the full set of known glycoprotein H and L (gH/gL) complexes. The approach yielded five proviral host factors from different protein families and eight antiviral host factors, mostly growth factor receptors. The tetraspanin CD151 was uncovered as a novel proviral host factor and was analyzed further. Like endothelial cells, fibroblasts were also less susceptible to HCMV infection after CD151 depletion. Virus strains with different sets of gH/gL complexes conferring either broad or narrow cell tropism were equally impaired. Infection of CD151-depleted cells by a fluorescent virus with differentially labeled capsid and envelope proteins revealed a role of CD151 in viral penetration but not in adsorption to the cell. In conclusion, the tetraspanin CD151 has emerged as a novel host factor in HCMV entry and as a putative antiviral target. IMPORTANCE: At present, the events at the virus-cell interface and the cellular proteins involved during the HCMV entry steps are scarcely understood. In this study, several host factors with putative roles in this process were identified. The tetraspanin CD151 was discovered as a previously unrecognized proviral host factor for HCMV and was found to support viral penetration into the target cells. The findings of this study shed light on the cellular contribution during the initial steps of HCMV infection and open a new direction in HCMV research.


Asunto(s)
Citomegalovirus , Fibroblastos/virología , Células Endoteliales de la Vena Umbilical Humana/virología , Tetraspanina 24/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Células Cultivadas , Fibroblastos/metabolismo , Eliminación de Gen , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Interferencia de ARN , ARN Interferente Pequeño/genética , Tetraspanina 24/antagonistas & inhibidores , Tetraspanina 24/genética
10.
J Virol ; 90(23): 10629-10641, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27654294

RESUMEN

The human papillomavirus (HPV) capsid protein L2 is essential for viral entry. To gain a deeper understanding of the role of L2, we searched for novel cellular L2-interacting proteins. A yeast two-hybrid analysis uncovered the actin-depolymerizing factor gelsolin, the membrane glycoprotein dysadherin, the centrosomal protein 68 (Cep68), and the cytoskeletal adaptor protein obscurin-like 1 protein (OBSL1) as putative L2 binding molecules. Pseudovirus (PsV) infection assays identified OBSL1 as a host factor required for gene transduction by three oncogenic human papillomavirus types, HPV16, HPV18, and HPV31. In addition, we detected OBSL1 expression in cervical tissue sections and noted the involvement of OBSL1 during gene transduction of primary keratinocytes by HPV16 PsV. Complex formation of HPV16 L2 with OBSL1 was demonstrated in coimmunofluorescence and coimmunoprecipitation studies after overexpression of L2 or after PsV exposure. We observed a strong colocalization of OBSL1 with HPV16 PsV and tetraspanin CD151 at the plasma membrane, suggesting a role for OBSL1 in viral endocytosis. Indeed, viral entry assays exhibited a reduction of viral endocytosis in OBSL1-depleted cells. Our results suggest OBSL1 as a novel L2-interacting protein and endocytosis factor in HPV infection. IMPORTANCE: Human papillomaviruses infect mucosal and cutaneous epithelia, and the high-risk HPV types account for 5% of cancer cases worldwide. As recently discovered, HPV entry occurs by a clathrin-, caveolin-, and dynamin-independent endocytosis via tetraspanin-enriched microdomains. At present, the cellular proteins involved in the underlying mechanism of this type of endocytosis are under investigation. In this study, the cytoskeletal adaptor OBSL1 was discovered as a previously unrecognized interaction partner of the minor capsid protein L2 and was identified as a proviral host factor required for HPV16 endocytosis into target cells. The findings of this study advance the understanding of a so far less well-characterized endocytic pathway that is used by oncogenic HPV subtypes.


Asunto(s)
Proteínas de la Cápside/fisiología , Proteínas del Citoesqueleto/fisiología , Papillomavirus Humano 16/fisiología , Proteínas Oncogénicas Virales/fisiología , Proteínas de la Cápside/genética , Línea Celular , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/genética , Endocitosis/fisiología , Técnicas de Silenciamiento del Gen , Células HeLa , Interacciones Huésped-Patógeno/fisiología , Papillomavirus Humano 16/genética , Humanos , Queratinocitos/fisiología , Queratinocitos/virología , Proteínas Oncogénicas Virales/genética , Infecciones por Papillomavirus/etiología , Técnicas del Sistema de Dos Híbridos , Internalización del Virus
11.
Biochem Soc Trans ; 45(2): 489-497, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28408489

RESUMEN

Members of the tetraspanin family have been identified as essential cellular membrane proteins in infectious diseases by nearly all types of pathogens. The present review highlights recently published data on the role of tetraspanin CD151, CD81, and CD63 and their interaction partners in host cell entry by human cytomegalo- and human papillomaviruses. Moreover, we discuss a model for tetraspanin assembly into trafficking platforms at the plasma membrane. These platforms might persist during intracellular viral trafficking.


Asunto(s)
Infecciones por Citomegalovirus/metabolismo , Infecciones por Papillomavirus/metabolismo , Tetraspaninas/metabolismo , Proteínas Virales/metabolismo , Membrana Celular/metabolismo , Citomegalovirus/fisiología , Humanos , Modelos Moleculares , Papillomaviridae/fisiología , Tetraspanina 24/química , Tetraspanina 24/metabolismo , Tetraspanina 28/química , Tetraspanina 28/metabolismo , Tetraspanina 30/química , Tetraspanina 30/metabolismo , Tetraspaninas/química , Internalización del Virus
12.
Cell Microbiol ; 16(8): 1179-200, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24444361

RESUMEN

Human papillomaviruses (HPV) induce warts and cancers on skin and mucosa. The HPV16 capsid is composed of the proteins L1 and L2. After cell entry and virus disassembly, the L2 protein accompanies the viral DNA to promyelocytic leukaemia nuclear bodies (PML-NBs) within the host nuclei enabling viral transcription and replication. Multiple components of PML-NBs are regulated by small ubiquitin-like modifiers (SUMOs) either based on covalent SUMO modification (SUMOylation), or based on non-covalent SUMO interaction via SUMO interacting motifs (SIMs). We show here that the HPV16 L2 comprises at least one SIM, which is crucial for the L2 interaction with SUMO2 in immunoprecipitation and colocalization with SUMO2 in PML-NBs. Biophysical analysis confirmed a direct L2 interaction with SUMO substantiated by identification of potential L2-SUMO interaction structures in molecular dynamics simulations. Mutation of the SIM resulted in absence of the L2-DNA complex at PML-NB and in a loss of infectivity of mutant HPV16 pseudoviruses. In contrast, we found that L2 SUMOylation has no effect on L2 localization in PML-NBs and SUMO interaction. Our data suggest that the L2 SIM is important for L2 interaction with SUMO and/or SUMOylated proteins, which is indispensable for the delivery of viral DNA to PML-NBs and efficient HPV infection.


Asunto(s)
Proteínas de la Cápside/metabolismo , Papillomavirus Humano 16/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Infecciones por Papillomavirus/patología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Antígenos Virales/genética , Antígenos Virales/metabolismo , Proteínas de la Cápside/genética , Línea Celular Tumoral , Células HEK293 , Células HeLa , Papillomavirus Humano 16/genética , Humanos , Simulación de Dinámica Molecular , Proteínas Nucleares/metabolismo , Proteínas Oncogénicas Virales/genética , Proteína de la Leucemia Promielocítica , Estructura Terciaria de Proteína , Proteína SUMO-1/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Dedos de Zinc/fisiología
14.
Biophys J ; 107(1): 100-13, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24988345

RESUMEN

CD81 is a ubiquitously expressed member of the tetraspanin family. It forms large molecular platforms, so-called tetraspanin webs that play physiological roles in a variety of cellular functions and are involved in viral and parasite infections. We have investigated which part of the CD81 molecule is required for the formation of domains in the cell membranes of T-cells and hepatocytes. Surprisingly, we find that large CD81 platforms assemble via the short extracellular δ-domain, independent from a strong primary partner binding and from weak interactions mediated by palmitoylation. The δ-domain is also essential for the platforms to function during viral entry. We propose that, instead of stable binary interactions, CD81 interactions via the small δ-domain, possibly involving a dimerization step, play the key role in organizing CD81 into large tetraspanin webs and controlling its function.


Asunto(s)
Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Tetraspanina 28/química , Células Hep G2 , Humanos , Células Jurkat , Lipoilación , Unión Proteica , Estructura Terciaria de Proteína , Tetraspanina 28/metabolismo
15.
Antimicrob Agents Chemother ; 58(5): 2905-11, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24614368

RESUMEN

Several viruses, including human papillomaviruses, depend on endosomal acidification for successful infection. Hence, the multisubunit enzyme vacuolar ATPase (V-ATPase), which is mainly responsible for endosome acidification in the cell, represents an attractive target for antiviral strategies. In the present study, we show that V-ATPase is required for human papillomavirus (HPV) infection and that uncoating/disassembly but not endocytosis is affected by V-ATPase inhibition. The infection inhibitory potencies of saliphenylhalamide, a proven V-ATPase inhibitor, and its derivatives, as well as those of other V-ATPase inhibitors, were analyzed on different HPV types in relevant cell lines. Variation in the selectivity indices among V-ATPase inhibitors was high, while variation for the same inhibitor against different HPV subtypes was low, indicating that broad-spectrum anti-HPV activity can be provided.


Asunto(s)
Alphapapillomavirus/efectos de los fármacos , Antivirales/farmacología , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , Proteínas Virales/antagonistas & inhibidores , Alphapapillomavirus/patogenicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Endocitosis/efectos de los fármacos , Células HeLa , Humanos
16.
J Virol ; 87(6): 3435-46, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23302890

RESUMEN

Human papillomavirus type 16 (HPV16) is the primary etiologic agent for cervical cancer. The infectious entry of HPV16 into cells occurs via a so-far poorly characterized clathrin- and caveolin-independent endocytic pathway, which involves tetraspanin proteins and actin. In this study, we investigated the specific role of the tetraspanin CD151 in the early steps of HPV16 infection. We show that surface-bound HPV16 moves together with CD151 within the plane of the membrane before they cointernalize into endosomes. Depletion of endogenous CD151 did not affect binding of viral particles to cells but resulted in reduction of HPV16 endocytosis. HPV16 uptake is dependent on the C-terminal cytoplasmic region of CD151 but does not require its tyrosine-based sorting motif. Reexpression of the wild-type CD151 but not mutants affecting integrin functions restored virus internalization in CD151-depleted cells. Accordingly, short interfering RNA (siRNA) gene knockdown experiments confirmed that CD151-associated integrins (i.e., α3ß1 and α6ß1/4) are involved in HPV16 infection. Furthermore, palmitoylation-deficient CD151 did not support HPV16 cell entry. These data show that complex formation of CD151 with laminin-binding integrins and integration of the complex into tetraspanin-enriched microdomains are critical for HPV16 endocytosis.


Asunto(s)
Endocitosis , Papillomavirus Humano 16/fisiología , Tetraspanina 24/metabolismo , Internalización del Virus , Línea Celular , Análisis Mutacional de ADN , Técnicas de Silenciamiento del Gen , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Tetraspanina 24/genética
17.
J Virol ; 87(13): 7765-73, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23616662

RESUMEN

Human papillomavirus type 18 (HPV18), one of the HPVs with malignant potential, enters cells by an unknown endocytic mechanism. The key cellular requirements for HPV18 endocytosis were tested in comparison to those for HPV16 and -31 endocytoses. HPV18 (like HPV16 and -31) entry was independent of clathrin, caveolin, dynamin, and lipid rafts but required actin polymerization and tetraspanin CD151, and the viruses were routed to the same LAMP-1-positive compartment. Hence, the viruses shared similar cellular requirements for endocytic entry.


Asunto(s)
Endocitosis/fisiología , Papillomavirus Humano 16/fisiología , Papillomavirus Humano 18/fisiología , Papillomavirus Humano 31/fisiología , Internalización del Virus , Actinas/metabolismo , Dinamina II , Electroforesis en Gel de Poliacrilamida , Células HeLa , Humanos , Proteínas de Membrana de los Lisosomas/metabolismo , Microdominios de Membrana , Microscopía Confocal , Microscopía Electrónica , Microscopía Fluorescente , Polimerizacion , Tetraspanina 24/metabolismo
18.
J Virol ; 87(8): 4461-74, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23388722

RESUMEN

The minor capsid protein L2 of human papillomaviruses (HPVs) has multiple functions during the viral life cycle. Although L2 is required for effective invasion and morphogenesis, only a few cellular interaction partners are known so far. Using yeast two-hybrid screening, we identified the transcription factor TBX2 as a novel interaction partner of HPV type 16 (HPV16) L2. Coimmunoprecipitations and immunofluorescence analyses confirmed the L2-TBX2 interaction and revealed that L2 also interacts with TBX3, another member of the T-box family. Transcription of the early genes during HPV infection is under the control of an upstream enhancer and early promoter region, the long control region (LCR). In promoter-reporter gene assays, we observed that TBX2 and TBX3 repress transcription from the LCR and that this effect is enhanced by L2. Repression of the HPV LCR by TBX2/3 seems to be a conserved mechanism, as it was also observed with the LCRs of different HPV types. Finally, interaction of TBX2 with the LCR was detected by chromatin immunoprecipitation, and we found a strong colocalization of L2 and TBX2 in HPV16-positive cervical intraepithelial neoplasia (CIN) I-II tissue sections. These results suggest that TBX2/3 might play a role in the regulation of HPV gene expression during the viral life cycle.


Asunto(s)
Proteínas de la Cápside/metabolismo , Interacciones Huésped-Patógeno , Papillomavirus Humano 16/fisiología , Proteínas Oncogénicas Virales/metabolismo , Proteínas de Dominio T Box/metabolismo , Transcripción Genética , Replicación Viral , Células HeLa , Papillomavirus Humano 16/inmunología , Papillomavirus Humano 16/patogenicidad , Humanos , Inmunoprecipitación , Microscopía Fluorescente , Mapeo de Interacción de Proteínas , Técnicas del Sistema de Dos Híbridos
20.
Front Immunol ; 15: 1335302, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38370412

RESUMEN

Human papillomaviruses (HPVs) are a major cause of cancer. While surgical intervention remains effective for a majority of HPV-caused cancers, the urgent need for medical treatments targeting HPV-infected cells persists. The pivotal early genes E6 and E7, which are under the control of the viral genome's long control region (LCR), play a crucial role in infection and HPV-induced oncogenesis, as well as immune evasion. In this study, proteomic analysis of endosomes uncovered the co-internalization of ErbB2 receptor tyrosine kinase, also called HER2/neu, with HPV16 particles from the plasma membrane. Although ErbB2 overexpression has been associated with cervical cancer, its influence on HPV infection stages was previously unknown. Therefore, we investigated the role of ErbB2 in HPV infection, focusing on HPV16. Through siRNA-mediated knockdown and pharmacological inhibition studies, we found that HPV16 entry is independent of ErbB2. Instead, our signal transduction and promoter assays unveiled a concentration- and activation-dependent regulatory role of ErbB2 on the HPV16 LCR by supporting viral promoter activity. We also found that ErbB2's nuclear localization signal was not essential for LCR activity, but rather the cellular ErbB2 protein level and activation status that were inhibited by tucatinib and CP-724714. These ErbB2-specific tyrosine kinase inhibitors as well as ErbB2 depletion significantly influenced the downstream Akt and ERK signaling pathways and LCR activity. Experiments encompassing low-risk HPV11 and high-risk HPV18 LCRs uncovered, beyond HPV16, the importance of ErbB2 in the general regulation of the HPV early promoter. Expanding our investigation to directly assess the impact of ErbB2 on viral gene expression, quantitative analysis of E6 and E7 transcript levels in HPV16 and HPV18 transformed cell lines unveiled a noteworthy decrease in oncogene expression following ErbB2 depletion, concomitant with the downregulation of Akt and ERK signaling pathways. In light of these findings, we propose that ErbB2 holds promise as potential target for treating HPV infections and HPV-associated malignancies by silencing viral gene expression.


Asunto(s)
Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Humanos , Línea Celular Tumoral , Papillomavirus Humano 16/metabolismo , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Infecciones por Papillomavirus/metabolismo , Proteómica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Represoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA