Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Lab Invest ; 104(2): 100305, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38109999

RESUMEN

Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease in the United States and worldwide. Proteinuria is a major marker of the severity of injury. Dipeptidyl peptidase-4 inhibitor (DPP-4I) increases incretin-related insulin production and is, therefore, used to treat diabetes. We investigated whether DPP4I could have direct effect on kidney independent of its hypoglycemic activity. We, therefore, tested the effects of DPP4I with or without angiotensin-converting enzyme inhibitor (ACEI) on the progression of diabetic nephropathy and albuminuria in a murine model of DKD. eNOS-/-db/db mice were randomized to the following groups at age 10 weeks and treated until sacrifice: baseline (sacrificed at week 10), untreated control, ACEI, DPP4I, and combination of DPP4I and ACEI (Combo, sacrificed at week 18). Systemic parameters and urine albumin-creatinine ratio were assessed at baseline, weeks 14, and 18. Kidney morphology, glomerular filtration rate (GFR), WT-1, a marker for differentiated podocytes, podoplanin, a marker of foot process integrity, glomerular collagen IV, and alpha-smooth muscle actin were assessed at the end of the study. All mice had hyperglycemia and proteinuria at study entry at week 10. Untreated control mice had increased albuminuria, progression of glomerular injury, and reduced GFR at week 18 compared with baseline. DPP4I alone reduced blood glucose and kidney DPP-4 activity but failed to protect against kidney injury compared with untreated control. ACEI alone and combination groups showed significantly reduced albuminuria and glomerular injury, and maintained GFR and WT-1+ cells. Only the combination group had significantly less glomerular collagen IV deposition and more podoplanin preservation than the untreated control. DPP-4I alone does not decrease the progression of kidney injury in the eNOS-/-db/db mouse model, suggesting that targeting only hyperglycemia is not an optimal treatment strategy for DKD. Combined DPP-4I with ACEI added more benefit to reducing the glomerular matrix.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Inhibidores de la Dipeptidil-Peptidasa IV , Hiperglucemia , Ratones , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/etiología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Albuminuria/tratamiento farmacológico , Albuminuria/complicaciones , Riñón , Hipoglucemiantes/farmacología , Ratones Endogámicos , Colágeno , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/farmacología , Dipeptidil Peptidasa 4
2.
Kidney Int ; 105(6): 1200-1211, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38423183

RESUMEN

Podocyte injury and loss are hallmarks of diabetic nephropathy (DN). However, the molecular mechanisms underlying these phenomena remain poorly understood. YAP (Yes-associated protein) is an important transcriptional coactivator that binds with various other transcription factors, including the TEAD family members (nuclear effectors of the Hippo pathway), that regulate cell proliferation, differentiation, and apoptosis. The present study found an increase in YAP phosphorylation at S127 of YAP and a reduction of nuclear YAP localization in podocytes of diabetic mouse and human kidneys, suggesting dysregulation of YAP may play a role in diabetic podocyte injury. Tamoxifen-inducible podocyte-specific Yap gene knockout mice (YappodKO) exhibited accelerated and worsened diabetic kidney injury. YAP inactivation decreased transcription factor WT1 expression with subsequent reduction of Tead1 and other well-known targets of WT1 in diabetic podocytes. Thus, our study not only sheds light on the pathophysiological roles of the Hippo pathway in diabetic podocyte injury but may also lead to the development of new therapeutic strategies to prevent and/or treat DN by targeting the Hippo signaling pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Ratones Noqueados , Fosfoproteínas , Podocitos , Transducción de Señal , Factores de Transcripción , Proteínas WT1 , Proteínas Señalizadoras YAP , Podocitos/metabolismo , Podocitos/patología , Animales , Proteínas WT1/metabolismo , Proteínas WT1/genética , Proteínas Señalizadoras YAP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/genética , Humanos , Fosforilación , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Factores de Transcripción de Dominio TEA/metabolismo , Vía de Señalización Hippo , Ratones , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Masculino , Ratones Endogámicos C57BL , Tamoxifeno/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
3.
Am J Kidney Dis ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094958

RESUMEN

Mitochondrial cytopathies can have kidney involvement in up to half of cases. Their diagnosis is challenging due to phenotypic variability, lack of noninvasive tests to assess mitochondrial dysfunction and genetic heterogeneity. We report on a young adult male with hypertrophic cardiomyopathy (HCM) and chronic kidney disease (CKD) with sub-nephrotic proteinuria, who presented to the emergency department with kidney failure and hypervolemia requiring dialysis. A kidney biopsy showed focal segmental and global glomerulosclerosis, extensive foot process effacement, and abnormal mitochondria in podocytes and tubular epithelial cells; the genetic workup identified a rare FASTKD2 exon 2 variant, c.29G>C p.(Ser10Thr), in homozygosity; and functional mitochondrial assays in cultured skin fibroblasts showed reduction in FASTKD2 protein expression and moderate combined impairment in mitochondrial respiratory chain (MRC) assembly and function. This is the first report of a FASTKD2-associated cardiorenal mitochondrial cytopathy, characterized by young adult-onset proteinuric CKD and dilated HCM, in the absence of the severe neurologic manifestations described in patients with biallelic FASTKD2 mutations. We hypothesize that the increased production of reactive oxygen species associated with moderate MRC impairment could result in a smoldering podocytopathy with progressive proteinuric CKD, without overt tubulopathy or encephalomyopathy, which are, instead, pathogenically related to adenosine triphosphate deficiency.

4.
Pediatr Nephrol ; 39(8): 2301-2308, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38191938

RESUMEN

The intricate relationship between tubular injury and glomerular dysfunction in kidney diseases has been a subject of extensive research. While the impact of glomerular injury on downstream tubules has been well-studied, the reverse influence of tubular injury on the glomerulus remains less explored. This paper provides a comprehensive review of recent advances in the field, focusing on key pathways and players implicated in the pathogenesis of tubular injury on glomerular dysfunction. Anatomical and physiological evidence supports the possibility of crosstalk from the tubule to the glomerulus, whereby various mechanisms contribute to glomerular injury following tubular injury. These mechanisms include tubular backleak, dysfunctional tubuloglomerular feedback, capillary rarefaction, atubular glomeruli, and the secretion of factors from damaged tubular epithelial cells. Clinical evidence further supports the association between even mild or recovered acute kidney injury and an increased risk of chronic kidney disease, including glomerular diseases. We also discuss potential therapeutic interventions aimed at mitigating acute tubular injury, thereby reducing the detrimental effects on glomerular function. By unraveling the complex interplay from tubular injury to glomerular dysfunction, we aim to provide insights that can enhance clinical management strategies and improve outcomes for patients with kidney disease.


Asunto(s)
Lesión Renal Aguda , Glomérulos Renales , Túbulos Renales , Humanos , Glomérulos Renales/patología , Glomérulos Renales/fisiopatología , Lesión Renal Aguda/etiología , Lesión Renal Aguda/fisiopatología , Lesión Renal Aguda/patología , Lesión Renal Aguda/metabolismo , Túbulos Renales/patología , Animales
6.
JAMA ; 331(6): 471-472, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38241042

RESUMEN

This Viewpoint discusses the potential drawbacks of the use of artificial intelligence (AI) in medicine, for example, the loss of certain skills due to the reliance on AI, and how physicians should consider how to take advantage of the potential benefits of AI without losing control over their profession.

7.
Clin Kidney J ; 17(8): sfae213, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39135939

RESUMEN

Background: Genetic variants in SEC61A1 are associated with autosomal dominant tubulointerstitial kidney disease. SEC61A1 is a translocon in the endoplasmic reticulum membrane and variants affect biosynthesis of renin and uromodulin. Methods: A patient is described that presented at 1 year of age with failure-to-thrive, kidney failure (glomerular filtration rate, GFR, 18 ml/min/1.73m2), hyperkalemia and acidosis. Genetic evaluation was performed by whole genome sequencing. Results: The patient has a novel de novo heterozygous SEC61A1 variant, Phe458Val. Plasma renin was low or normal, aldosterone was low or undetectable and uromodulin was low. Kidney biopsy at 2 years exhibited subtle changes suggestive of tubular dysgenesis without tubulocystic or glomerulocystic lesions and with renin staining of the juxtaglomerular cells. The patient experienced extreme fatigue due to severe hypotension attributed to hypoaldosteronism and at 8 years of age fludrocortisone treatment was initiated with marked improvement in her well-being. Blood pressure and potassium normalized. Biopsy at 9 years showed extensive glomerulosclerosis and mild tubulointerstitial fibrosis, as well as tubular mitochondrial abnormalities, without specific diagnostic changes. Her GFR improved to 54 ml/min/1.73m2. Conclusions: As the renin-angiotensin system promotes aldosterone release, and the patient had repeatedly undetectable aldosterone levels, the SEC61A1 variant presumably contributed to severe hypotension. Treatment with a mineralocorticoid had a beneficial effect and corrected the electrolyte and acid-base disorder. We suggest that the increased blood pressure hemodynamically improved the patient's kidney function.

8.
J Clin Invest ; 134(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488009

RESUMEN

Uncontrolled accumulation of extracellular matrix leads to tissue fibrosis and loss of organ function. We previously demonstrated in vitro that the DNA/RNA-binding protein fused in sarcoma (FUS) promotes fibrotic responses by translocating to the nucleus, where it initiates collagen gene transcription. However, it is still not known whether FUS is profibrotic in vivo and whether preventing its nuclear translocation might inhibit development of fibrosis following injury. We now demonstrate that levels of nuclear FUS are significantly increased in mouse models of kidney and liver fibrosis. To evaluate the direct role of FUS nuclear translocation in fibrosis, we used mice that carry a mutation in the FUS nuclear localization sequence (FUSR521G) and the cell-penetrating peptide CP-FUS-NLS that we previously showed inhibits FUS nuclear translocation in vitro. We provide evidence that FUSR521G mice or CP-FUS-NLS-treated mice showed reduced nuclear FUS and fibrosis following injury. Finally, differential gene expression analysis and immunohistochemistry of tissues from individuals with focal segmental glomerulosclerosis or nonalcoholic steatohepatitis revealed significant upregulation of FUS and/or collagen genes and FUS protein nuclear localization in diseased organs. These results demonstrate that injury-induced nuclear translocation of FUS contributes to fibrosis and highlight CP-FUS-NLS as a promising therapeutic option for organ fibrosis.


Asunto(s)
Esclerosis Amiotrófica Lateral , ARN , Animales , Ratones , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Mutación , ADN , Fibrosis , Colágeno/metabolismo , Esclerosis Amiotrófica Lateral/genética
9.
Nat Rev Nephrol ; 20(7): 473-485, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38570631

RESUMEN

Early detection is a key strategy to prevent kidney disease, its progression and related complications, but numerous studies show that awareness of kidney disease at the population level is low. Therefore, increasing knowledge and implementing sustainable solutions for early detection of kidney disease are public health priorities. Economic and epidemiological data underscore why kidney disease should be placed on the global public health agenda - kidney disease prevalence is increasing globally and it is now the seventh leading risk factor for mortality worldwide. Moreover, demographic trends, the obesity epidemic and the sequelae of climate change are all likely to increase kidney disease prevalence further, with serious implications for survival, quality of life and health care spending worldwide. Importantly, the burden of kidney disease is highest among historically disadvantaged populations that often have limited access to optimal kidney disease therapies, which greatly contributes to current socioeconomic disparities in health outcomes. This joint statement from the International Society of Nephrology, European Renal Association and American Society of Nephrology, supported by three other regional nephrology societies, advocates for the inclusion of kidney disease in the current WHO statement on major non-communicable disease drivers of premature mortality.


Asunto(s)
Salud Global , Salud Pública , Insuficiencia Renal Crónica , Humanos , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/terapia , Consenso , Factores de Riesgo
10.
Cardiovasc Res ; 120(8): 899-913, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38377486

RESUMEN

AIMS: The lymphocyte adaptor protein (LNK) is a negative regulator of cytokine and growth factor signalling. The rs3184504 variant in SH2B3 reduces LNK function and is linked to cardiovascular, inflammatory, and haematologic disorders, including stroke. In mice, deletion of Lnk causes inflammation and oxidative stress. We hypothesized that Lnk-/- mice are susceptible to atrial fibrillation (AF) and that rs3184504 is associated with AF and AF-related stroke in humans. During inflammation, reactive lipid dicarbonyls are the major components of oxidative injury, and we further hypothesized that these mediators are critical drivers of the AF substrate in Lnk-/- mice. METHODS AND RESULTS: Lnk-/- or wild-type (WT) mice were treated with vehicle or 2-hydroxybenzylamine (2-HOBA), a dicarbonyl scavenger, for 3 months. Compared with WT, Lnk-/- mice displayed increased AF duration that was prevented by 2-HOBA. In the Lnk-/- atria, action potentials were prolonged with reduced transient outward K+ current, increased late Na+ current, and reduced peak Na+ current, pro-arrhythmic effects that were inhibited by 2-HOBA. Mitochondrial dysfunction, especially for Complex I, was evident in Lnk-/- atria, while scavenging lipid dicarbonyls prevented this abnormality. Tumour necrosis factor-α (TNF-α) and interleukin-1 beta (IL-1ß) were elevated in Lnk-/- plasma and atrial tissue, respectively, both of which caused electrical and bioenergetic remodelling in vitro. Inhibition of soluble TNF-α prevented electrical remodelling and AF susceptibility, while IL-1ß inhibition improved mitochondrial respiration but had no effect on AF susceptibility. In a large database of genotyped patients, rs3184504 was associated with AF, as well as AF-related stroke. CONCLUSION: These findings identify a novel role for LNK in the pathophysiology of AF in both experimental mice and humans. Moreover, reactive lipid dicarbonyls are critical to the inflammatory AF substrate in Lnk-/- mice and mediate the pro-arrhythmic effects of pro-inflammatory cytokines, primarily through electrical remodelling.


Asunto(s)
Potenciales de Acción , Proteínas Adaptadoras Transductoras de Señales , Fibrilación Atrial , Modelos Animales de Enfermedad , Interleucina-1beta , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos , Animales , Femenino , Humanos , Masculino , Potenciales de Acción/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Fibrilación Atrial/metabolismo , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/genética , Bencilaminas/farmacología , Predisposición Genética a la Enfermedad , Frecuencia Cardíaca/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Mitocondrias Cardíacas/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Estrés Oxidativo/efectos de los fármacos , Fenotipo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética
11.
Clin J Am Soc Nephrol ; 19(4): 438-451, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38261310

RESUMEN

BACKGROUND: Nephritis is a common manifestation of IgA vasculitis and is morphologically indistinguishable from IgA nephropathy. While MEST-C scores are predictive of kidney outcomes in IgA nephropathy, their value in IgA vasculitis nephritis has not been investigated in large multiethnic cohorts. METHODS: Biopsies from 262 children and 99 adults with IgA vasculitis nephritis ( N =361) from 23 centers in North America, Europe, and Asia were independently scored by three pathologists. MEST-C scores were assessed for correlation with eGFR/proteinuria at biopsy. Because most patients ( N =309, 86%) received immunosuppression, risk factors for outcomes were evaluated in this group using latent class mixed models to identify classes of eGFR trajectories over a median follow-up of 2.7 years (interquartile range, 1.2-5.1). Clinical and histologic parameters associated with each class were determined using logistic regression. RESULTS: M, E, T, and C scores were correlated with either eGFR or proteinuria at biopsy. Two classes were identified by latent class mixed model, one with initial improvement in eGFR followed by a late decline (class 1, N =91) and another with stable eGFR (class 2, N =218). Class 1 was associated with a higher risk of an established kidney outcome (time to ≥30% decline in eGFR or kidney failure; hazard ratio, 5.84; 95% confidence interval, 2.37 to 14.4). Among MEST-C scores, only E1 was associated with class 1 by multivariable analysis. Other factors associated with class 1 were age 18 years and younger, male sex, lower eGFR at biopsy, and extrarenal noncutaneous disease. Fibrous crescents without active changes were associated with class 2. CONCLUSIONS: Kidney outcome in patients with biopsied IgA vasculitis nephritis treated with immunosuppression was determined by clinical risk factors and endocapillary hypercellularity (E1) and fibrous crescents, which are features that are not part of the International Study of Diseases of Children classification.


Asunto(s)
Glomerulonefritis por IGA , Vasculitis por IgA , Nefritis , Adulto , Niño , Humanos , Masculino , Adolescente , Glomerulonefritis por IGA/complicaciones , Glomerulonefritis por IGA/tratamiento farmacológico , Glomerulonefritis por IGA/patología , Vasculitis por IgA/complicaciones , Vasculitis por IgA/tratamiento farmacológico , Vasculitis por IgA/patología , Tasa de Filtración Glomerular , Riñón/patología , Nefritis/complicaciones , Proteinuria/etiología , Biopsia , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA