Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Biomacromolecules ; 25(6): 3850-3862, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38775104

RESUMEN

Cationic polysaccharides have been extensively studied for drug delivery via the bloodstream, yet few have progressed to clinical use. Endothelial cells lining the blood vessel wall are coated in an anionic extracellular matrix called the glycocalyx. However, we do not fully comprehend the charged polysaccharide interactions with the glycocalyx. We reveal that the cationic polysaccharide poly(acetyl, arginyl) glucosamine (PAAG) exhibits the highest association with the endothelial glycocalyx, followed by dextran (neutral) and hyaluronan (anionic). Furthermore, we demonstrate that PAAG binds heparan sulfate (HS) within the glycocalyx, leading to intracellular accumulation. Using an in vitro glycocalyx model, we demonstrate a charge-based extent of association of polysaccharides with HS. Mechanistically, we observe that PAAG binding to HS occurs via a condensation reaction and functionally protects HS from degradation. Together, this study reveals the interplay between polysaccharide charge properties and interactions with the endothelial cell glycocalyx toward improved delivery system design and application.


Asunto(s)
Cationes , Matriz Extracelular , Glicocálix , Heparitina Sulfato , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Humanos , Glicocálix/metabolismo , Glicocálix/química , Matriz Extracelular/metabolismo , Cationes/química , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Ácido Hialurónico/química , Ácido Hialurónico/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo
2.
J Neurosci Res ; 99(6): 1515-1532, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33682204

RESUMEN

Ground state depletion followed by individual molecule return microscopy (GSDIM) has been used in the past to study the nanoscale distribution of protein co-localization in living cells. We now demonstrate the successful application of GSDIM to archival human brain tissue sections including from Alzheimer's disease cases as well as experimental tissue samples from mouse and zebrafish larvae. Presynaptic terminals and microglia and their cell processes were visualized at a resolution beyond diffraction-limited light microscopy, allowing clearer insights into their interactions in situ. The procedure described here offers time and cost savings compared to electron microscopy and opens the spectrum of molecular imaging using antibodies and super-resolution microscopy to the analysis of routine formalin-fixed paraffin sections of archival human brain. The investigation of microglia-synapse interactions in dementia will be of special interest in this context.


Asunto(s)
Microglía/fisiología , Microglía/ultraestructura , Microscopía/métodos , Sinapsis/fisiología , Sinapsis/ultraestructura , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Animales , Anticuerpos , Femenino , Humanos , Larva , Masculino , Ratones , Microscopía Confocal , Persona de Mediana Edad , Terminales Presinápticos/fisiología , Terminales Presinápticos/ultraestructura , Fijación del Tejido , Pez Cebra
3.
Cell Mol Neurobiol ; 38(8): 1557-1563, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30218404

RESUMEN

Overcoming neurite inhibition is integral for restoring neuronal connectivity after CNS injury. Actin dynamics are critical for neurite growth cone formation and extension. The tropomyosin family of proteins is a regarded as master regulator of actin dynamics. This study investigates tropomyosin isoform 3.1 (Tpm3.1) as a potential candidate for overcoming an inhibitory substrate, as it is known to influence neurite branching and outgrowth. We designed a microfluidic device that enables neurons to be grown adjacent to an inhibitory substrate, Nogo-66. Results show that neurons, overexpressing hTpm3.1, have an increased propensity to overcome Nogo-66 inhibition. We propose Tpm3.1 as a potential target for promoting neurite growth in an inhibitory environment in the central nervous system.


Asunto(s)
Hipocampo/citología , Dispositivos Laboratorio en un Chip , Proyección Neuronal , Neuronas/metabolismo , Tropomiosina/metabolismo , Animales , Humanos , Proyección Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Proteínas Nogo/farmacología , Reproducibilidad de los Resultados
4.
J Cell Biol ; 223(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38530252

RESUMEN

The integrity of the plasma membrane is critical to cell function and survival. Cells have developed multiple mechanisms to repair damaged plasma membranes. A key process during plasma membrane repair is to limit the size of the damage, which is facilitated by the presence of tetraspanin-enriched rings surrounding damage sites. Here, we identify phosphatidylserine-enriched rings surrounding damaged sites of the plasma membrane, resembling tetraspanin-enriched rings. Importantly, the formation of both the phosphatidylserine- and tetraspanin-enriched rings requires phosphatidylserine and its transfer proteins ORP5 and ORP9. Interestingly, ORP9, but not ORP5, is recruited to the damage sites, suggesting cells acquire phosphatidylserine from multiple sources upon plasma membrane damage. We further demonstrate that ORP9 contributes to efficient plasma membrane repair. Our results thus unveil a role for phosphatidylserine and its transfer proteins in facilitating the formation of tetraspanin-enriched macrodomains and plasma membrane repair.


Asunto(s)
Membrana Celular , Fosfatidilserinas , Tetraspaninas , Humanos , Células HeLa , Proteínas de la Membrana/metabolismo , Receptores de Esteroides/metabolismo
5.
Sci Rep ; 13(1): 15043, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37700036

RESUMEN

Posttraumatic syringomyelia (PTS) is an enigmatic condition characterized by the development of fluid-filled cysts (syrinxes) within the spinal cord. Perivascular spaces (PVS) are a critical component of fluid transport within the central nervous system (CNS), with dilated PVSs variably implicated in the pathogenesis of syringomyelia. The extent and spatial distribution of dilated PVSs in syringomyelia, however, remains unclear. This study aims to develop a method to assess PVS dimensions across multiple spinal cord segments in rats with PTS. Syrinxes were induced in two Sprague-Dawley rats at C6/7 with computer-controlled motorized spinal cord impaction; two control rats underwent sham laminectomies. Spinal cord segments were obtained at C4, C6 and C8, cleared via tissue clearing protocols, stained with immunofluorescent antibodies and imaged under confocal microscopy. Qualitative and quantitative analyses of PVS size were performed. Arteriolar PVSs were enlarged in the perisyringeal region of the spinal cord, compared to the control cord. No PVS enlargement was observed above or below the syrinx. These results confirm previous incidental findings of enlarged PVSs in the perisyringeal region, providing new insights into PVS dimensions across multiple spinal segments, and providing a novel method for quantifying spinal cord perivascular space size distributions.


Asunto(s)
Siringomielia , Ratas , Animales , Ratas Sprague-Dawley , Siringomielia/diagnóstico por imagen , Siringomielia/etiología , Roedores , Sistema Nervioso Central , Hipertrofia
6.
BMC Cell Biol ; 13: 12, 2012 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-22583596

RESUMEN

BACKGROUND: The behaviour of tumour cells depends on factors such as genetics and the tumour microenvironment. The latter plays a crucial role in normal mammary gland development and also in breast cancer initiation and progression. Breast cancer tissues tend to be highly desmoplastic and dense matrix as a pre-existing condition poses one of the highest risk factors for cancer development. However, matrix influence on tumour cell gene expression and behaviour such as cell migration is not fully elucidated. RESULTS: We generated high-density (HD) matrices that mimicked tumour collagen content of 20 mg/cm3 that were ~14-fold stiffer than low-density (LD) matrix of 1 mg/cm3. Live-cell imaging showed breast cancer cells utilizing cytoplasmic streaming and cell body contractility for migration within HD matrix. Cell migration was blocked in the presence of both the ROCK inhibitor, Y-27632, and the MMP inhibitor, GM6001, but not by the drugs individually. This suggests roles for ROCK1 and MMP in cell migration are complicated by compensatory mechanisms. ROCK1 expression and protein activity, were significantly upregulated in HD matrix but these were blocked by treatment with a histone deacetylase (HDAC) inhibitor, MS-275. In HD matrix, the inhibition of ROCK1 by MS-275 was indirect and relied upon protein synthesis and Notch1. Inhibition of Notch1 using pooled siRNA or DAPT abrogated the inhibition of ROCK1 by MS-275. CONCLUSION: Increased matrix density elevates ROCK1 activity, which aids in cell migration via cell contractility. The upregulation of ROCK1 is epigenetically regulated in an indirect manner involving the repression of Notch1. This is demonstrated from inhibition of HDACs by MS-275, which caused an upregulation of Notch1 levels leading to blockade of ROCK1 expression.


Asunto(s)
Receptor Notch1/metabolismo , Quinasas Asociadas a rho/metabolismo , Amidas/farmacología , Animales , Benzamidas/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Colágeno/química , Colágeno/metabolismo , Dipéptidos/farmacología , Regulación hacia Abajo/efectos de los fármacos , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Piridinas/farmacología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Receptor Notch1/antagonistas & inhibidores , Receptor Notch1/genética , Quinasas Asociadas a rho/antagonistas & inhibidores
7.
Gels ; 8(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35049567

RESUMEN

Recent advances in tissue clearing and light sheet fluorescence microscopy have improved insights into and understanding of tissue morphology and disease pathology by imaging large samples without the requirement of histological sectioning. However, sample handling and conservation of sample integrity during lengthy staining and acquisition protocols remains a challenge. This study overcomes these challenges with acrylamide hydrogels synthesised to match the refractive index of solutions typically utilised in aqueous tissue clearing protocols. These hydrogels have a high-water content (82.0 ± 3.7% by weight). The gels are stable over time and FITC-IgG readily permeated into and effluxed out of them. Whilst the gels deformed and/or swelled over time in some commonly used solutions, this was overcome by using a previously described custom refractive index matched solution. To validate their use, CUBIC cleared mouse tissues and whole embryos were embedded in hydrogels, stained using fluorescent small molecule dyes, labels and antibodies and successfully imaged using light sheet fluorescence microscopy. In conclusion, the high water content, high refractive index hydrogels described in this study have broad applicability to research that delves into pathophysiological processes by stabilising and protecting large and fragile samples.

8.
Schizophr Bull ; 45(2): 339-349, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29566220

RESUMEN

One neuropathological feature of schizophrenia is a diminished number of dendritic spines in the prefrontal cortex and hippocampus. The neuregulin 1 (Nrg1) system is involved in the plasticity of dendritic spines, and chronic stress decreases dendritic spine densities in the prefrontal cortex and hippocampus. Here, we aimed to assess whether Nrg1 deficiency confers vulnerability to the effects of adolescent stress on dendritic spine plasticity. We also assessed other schizophrenia-relevant neurobiological changes such as microglial cell activation, loss of parvalbumin (PV) interneurons, and induction of complement factor 4 (C4). Adolescent male wild-type (WT) and Nrg1 heterozygous mice were subjected to chronic restraint stress before their brains underwent Golgi impregnation or immunofluorescent staining of PV interneurons, microglial cells, and C4. Stress in WT mice promoted dendritic spine loss and microglial cell activation in the prefrontal cortex and the hippocampus. However, Nrg1 deficiency rendered mice resilient to stress-induced dendritic spine loss in the infralimbic cortex and the CA3 region of the hippocampus without affecting stress-induced microglial cell activation in these brain regions. Nrg1 deficiency and adolescent stress combined to trigger increased dendritic spine densities in the prelimbic cortex. In the hippocampal CA1 region, Nrg1 deficiency accentuated stress-induced dendritic spine loss. Nrg1 deficiency increased C4 protein and decreased C4 mRNA expression in the hippocampus, and the number of PV interneurons in the basolateral amygdala. This study demonstrates that Nrg1 modulates the impact of stress on the adolescent brain in a region-specific manner. It also provides first evidence of a link between Nrg1 and C4 systems in the hippocampus.


Asunto(s)
Amígdala del Cerebelo , Corteza Cerebral , Complemento C4/metabolismo , Espinas Dendríticas/patología , Microglía/metabolismo , Neurregulina-1/deficiencia , Resiliencia Psicológica , Estrés Psicológico , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/patología , Animales , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Interneuronas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Parvalbúminas/metabolismo , Distribución Aleatoria , Estrés Psicológico/metabolismo , Estrés Psicológico/patología
9.
Atherosclerosis ; 284: 153-159, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30913515

RESUMEN

BACKGROUND AND AIMS: Atherosclerosis is characterized by lipid deposition, monocyte infiltration and foam cell formation in the artery wall. Translocator protein (TSPO) is abundantly expressed in lipid rich tissues. Recently, TSPO has been identified as a potential diagnostic tool in cardiovascular disease. The purpose of this study was to determine if the TSPO ligand, 18F-PBR111, can identify early atherosclerotic lesions and if TSPO expression can be used to identify distinct macrophage populations during lesion progression. METHODS: ApoE-/- mice were maintained on a high-fat diet for 3 or 12 weeks. C57BL/6J mice maintained on chow diet served as controls. Mice were administered 18F-PBR111 intravenously and PET/CT imaged. After euthanasia, aortas were isolated, fixed and optically cleared. Cleared aortas were immunostained with DAPI, and fluorescently labelled with antibodies to TSPO, the tissue resident macrophage marker F4/80 and the monocyte-derived macrophage marker CD11b. TSPO expression and the macrophage markers were visualised in fatty streaks and established plaques by light sheet microscopy. RESULTS: While tissue resident F4/80 + macrophages were evident in the arteries of animals without atherosclerosis, no CD11b + macrophages were observed in these animals. In contrast, established plaques had high CD11b and low F4/80 expression. A ∼3-fold increase in the uptake of 18F-PBR111 was observed in the aortas of atherosclerotic mice relative to controls. CONCLUSIONS: Imaging of TSPO expression is a new approach for studying atherosclerotic lesion progression and inflammatory cell infiltration. The TSPO ligand, 18F-PBR111, is a potential clinical diagnostic tool for the detection and quantification of atherosclerotic lesion progression in humans.


Asunto(s)
Aterosclerosis/sangre , Aterosclerosis/diagnóstico , Antígeno CD11b/fisiología , Macrófagos , Receptores de GABA/fisiología , Animales , Antígeno CD11b/biosíntesis , Progresión de la Enfermedad , Diagnóstico Precoz , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Piridinas/administración & dosificación , Receptores de GABA/biosíntesis
10.
Front Mol Neurosci ; 12: 231, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31611772

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease with limited treatment and no cure. Mutations in profilin 1 were identified as a cause of familial ALS (fALS) in 2012. We investigated the functional impact of mutant profilin 1 expression in spinal cords during mouse development. We developed a novel mouse model with the expression of profilin 1 C71G under the control of the Hb9 promoter, targeting expression to α-motor neurons in the spinal cord during development. Embryos of transgenic mice showed evidence of a significant reduction of brachial nerve diameter and a loss of Mendelian inheritance. Despite the lack of transgene expression, adult mice presented with significant motor deficits. Transgenic mice had a significant reduction in the number of motor neurons in the spinal cord. Further analysis of these motor neurons in aged transgenic mice revealed reduced levels of TDP-43 and ChAT expression. Although profilin 1 C71G was only expressed during development, adult mice presented with some ALS-associated pathology and motor symptoms. This study highlights the effect of profilin 1 during neurodevelopment and the impact that this may have in later ALS.

11.
Biophys J ; 95(3): 1523-30, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18645198

RESUMEN

The extracellular availability of growth factors, hormones, chemokines, and neurotransmitters under gradient conditions is required for directional cellular responses such as migration, axonal pathfinding, and tissue patterning. These responses are, in turn, important in disease and developmental processes. This article addresses critical barriers toward devising a chemotaxis assay that is broadly applicable for different kinds of cancer cells through the design of a microfluidic chamber that produces a steep gradient of chemoattractant. Photolithography was used to create microchannels for chemoattractant delivery, flow diversion barriers/conduits, and small outlets in the form of apertures. The 1-microm apertures were made at the active surface by uncapping a thin (1.5 microm) layer of AZ1518. This process also created a vertical conduit that diverted the flow such that it occurred perpendicularly to the active, experimental surface where the gradients were measured. The other side of the vertical conduit opened to underlying 20-microm deep channels that carried microfluidic flows of tracer dyes/growth factors. Modeled data using computational fluid dynamics produced gradients that were steep along the horizontal, active surface. This simulation mirrors empirically derived gradients obtained from the flow analyses of fluorescent compounds. The open chamber contains a large buffer volume, which prevents chemoattractant saturation and permits easy cell and compound manipulation. The technique obviates the use of membranes or laminar flow that may hinder imaging, rinsing steps, cell seeding, and treatment. The utility of the chamber in the study of cell protrusion, an early step during chemotaxis, was demonstrated by growing cancer cells in the chamber, inducing a chemoattractant gradient using compressed air at 0.7 bar, and performing time-lapse microscopy. Breast cancer cells responded to the rapidly developed and stable gradient of epidermal growth factor by directing centroid positions toward the gradient and by forming a leading edge at a speed of 0.45 microm/min.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Fenómenos Fisiológicos Celulares/efectos de los fármacos , Factores Quimiotácticos/administración & dosificación , Factores Quimiotácticos/química , Análisis de Inyección de Flujo/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas de Cultivo de Célula/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Análisis de Inyección de Flujo/métodos , Técnicas Analíticas Microfluídicas/métodos
12.
Curr Biol ; 28(14): 2218-2229.e7, 2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-30056856

RESUMEN

The acquisition of new goal-directed actions requires the encoding of action-outcome associations. At a neural level, this encoding has been hypothesized to involve a prefronto-striatal circuit extending between the prelimbic cortex (PL) and the posterior dorsomedial striatum (pDMS); however, no research identifying this pathway with any precision has been reported. We started by mapping the prelimbic input to the dorsal and ventral striatum using a combination of retrograde and anterograde tracing with CLARITY and established that PL-pDMS projections share some overlap with projections to the nucleus accumbens core (NAc) in rats. We then tested whether each of these pathways were functionally required for goal-directed learning; we used a pathway-specific dual-virus chemogenetic approach to selectively silence pDMS-projecting or NAc-projecting PL neurons during instrumental training and tested rats for goal-directed action. We found that silencing PL-pDMS projections abolished goal-directed learning, whereas silencing PL-NAc projections left goal-directed learning intact. Finally, we used a three-virus approach to silence bilateral and contralateral pDMS-projecting PL neurons and again blocked goal-directed learning. These results establish that the acquisition of new goal-directed actions depends on the bilateral PL-pDMS pathway driven by intratelencephalic cortical neurons.


Asunto(s)
Condicionamiento Operante , Cuerpo Estriado/fisiología , Aprendizaje/fisiología , Vías Nerviosas/fisiología , Corteza Prefrontal/fisiología , Animales , Masculino , Tractos Piramidales/fisiología , Ratas , Ratas Long-Evans , Ratas Wistar , Telencéfalo/fisiología
13.
J Neurosci Methods ; 294: 102-110, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29155038

RESUMEN

BACKGROUND: High resolution neuronal information is extraordinarily useful in understanding the brain's functionality. The development of the Golgi-Cox stain allowed observation of the neuron in its entirety with unrivalled detail. Tissue clearing techniques, e.g., CLARITY and CUBIC, provide the potential to observe entire neuronal circuits intact within tissue and without previous restrictions with regard to section thickness. NEW METHOD: Here we describe an improved Golgi-Cox stain method, optimised for use with CLARITY and CUBIC that can be used in both fresh and fixed tissue. RESULTS: Using this method, we were able to observe neurons in their entirety within a fraction of the time traditionally taken to clear tissue (48h). We were also able to show for the first-time that Golgi stained tissue is fluorescent when visualized using a multi-photon microscope, allowing us to image synaptic spines with a detail previously unachievable. COMPARISON WITH EXISTING METHODS: These novel methods provide cheap and easy to use techniques to investigate the morphology of cellular processes in the brain at a new-found depth, speed, utility and detail, without previous restrictions of time, tissue type and section thickness. CONCLUSIONS: This is the first application of a Golgi-Cox stain to cleared brain tissue, it is investigated and discussed in detail, describing different methodologies that may be used, a comparison between the different clearing techniques and lastly the novel interaction of these techniques with this ultra-rapid stain.


Asunto(s)
Encéfalo/citología , Microscopía Confocal/métodos , Neuronas/citología , Coloración y Etiquetado/métodos , Animales , Masculino , Ratas Wistar , Fijación del Tejido
14.
Chem Commun (Camb) ; 54(89): 12618-12621, 2018 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-30349928

RESUMEN

Polyelectrolyte-protein complexes are widely used to deliver therapeutic proteins. Here, we present a method for imaging the release of drugs from polyion complex (PIC) micelles in 3D tumour spheroids using light-sheet microscopy. A negatively charged block copolymer was condensed with a positively charged model drug, hen egg white lysozyme (HEWL) by electrostatic interaction. We were able to observe the distribution of polymer and protein within the entire tumour spheroid, showing that the protein was released from the polyelectrolyte complex upon cell internalization at the peripheral cell layer of the spheroid.


Asunto(s)
Sistemas de Liberación de Medicamentos , Micelas , Muramidasa/química , Polímeros/química , Esferoides Celulares/química , Portadores de Fármacos/química , Humanos , Iones/química , Células MCF-7 , Microscopía Fluorescente , Estructura Molecular , Muramidasa/metabolismo , Esferoides Celulares/metabolismo , Electricidad Estática
15.
Front Cell Neurosci ; 11: 421, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29311841

RESUMEN

Nerve cell connections, formed in the developing brain of mammals, undergo a well-programmed process of maturation with changes in their molecular composition over time. The major structural element at the post-synaptic specialization is the actin cytoskeleton, which is composed of different populations of functionally distinct actin filaments. Previous studies, using ultrastructural and light imaging techniques have established the presence of different actin filament populations at the post-synaptic site. However, it remains unknown, how these different actin filament populations are defined and how their molecular composition changes over time. In the present study, we have characterized changes in a core component of actin filaments, the tropomyosin (Tpm) family of actin-associated proteins from embryonal stage to the adult stage. Using biochemical fractionation of mouse brain tissue, we identified the tropomyosin Tpm4.2 as the major post-synaptic Tpm. Furthermore, we found age-related differences in the composition of Tpms at the post-synaptic compartment. Our findings will help to guide future studies that aim to define the functional properties of actin filaments at different developmental stages in the mammalian brain.

16.
PLoS One ; 12(11): e0187979, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29145435

RESUMEN

Genetically encoded filamentous actin probes, Lifeact, Utrophin and F-tractin, are used as tools to label the actin cytoskeleton. Recent evidence in several different cell types indicates that these probes can cause changes in filamentous actin dynamics, altering cell morphology and function. Although these probes are commonly used to visualise actin dynamics in neurons, their effects on axonal and dendritic morphology has not been systematically characterised. In this study, we quantitatively analysed the effect of Lifeact, Utrophin and F-tractin on neuronal morphogenesis in primary hippocampal neurons. Our data show that the expression of actin-tracking probes significantly impacts on axonal and dendrite growth these neurons. Lifeact-GFP expression, under the control of a pBABE promoter, caused a significant decrease in total axon length, while another Lifeact-GFP expression, under the control of a CAG promoter, decreased the length and complexity of dendritic trees. Utr261-EGFP resulted in increased dendritic branching but Utr230-EGFP only accumulated in cell soma, without labelling any neurites. Lifeact-7-mEGFP and F-tractin-EGFP in a pEGFP-C1 vector, under the control of a CMV promoter, caused only minor changes in neuronal morphology as detected by Sholl analysis. The results of this study demonstrate the effects that filamentous actin tracking probes can have on the axonal and dendritic compartments of neuronal cells and emphasise the care that must be taken when interpreting data from experiments using these probes.


Asunto(s)
Actinas/metabolismo , Sondas Moleculares/metabolismo , Neuronas/metabolismo , Animales , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas
17.
BMC Cancer ; 6: 151, 2006 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-16756685

RESUMEN

BACKGROUND: Non-small cell lung cancer is the most common cause of early casualty from malignant disease in western countries. The heterogeneous nature of these cells has been identified by histochemical and microarray biomarker analyses. Unfortunately, the morphological, molecular and biological variation within cell lines used as models for invasion and metastasis are not well understood. In this study, we test the hypothesis that heterogeneous cancer cells exhibit variable motility responses such as chemokinesis and chemotaxis that can be characterized molecularly. METHODS: A subpopulation of H460 lung cancer cells called KINE that migrated under chemokinetic (no gradient) conditions was harvested from Boyden chambers and cultured. Time-lapsed microscopy, immunofluorescence microscopy and microarray analyses were then carried out comparing chemokinetic KINE cells with the unselected CON cell population. RESULTS: Time-lapsed microscopy and analysis showed that KINE cells moved faster but less directionally than the unselected control population (CON), confirming their chemokinetic character. Of note was that chemokinetic KINE cells also chemotaxed efficiently. KINE cells were less adhesive to substrate than CON cells and demonstrated loss of mature focal adhesions at the leading edge and the presence of non-focalized cortical actin. These characteristics are common in highly motile amoeboid cells that may favour faster motility speeds. KINE cells were also significantly more invasive compared to CON. Gene array studies and real-time PCR showed the downregulation of a gene called, ROM, in highly chemokinetic KINE compared to mainly chemotactic CON cells. ROM was also reduced in expression in a panel of lung cancer cell lines compared to normal lung cells. CONCLUSION: This study shows that cancer cells that are efficient in both chemokinesis and chemotaxis demonstrate high invasion levels. These cells possess different morphological, cytoskeletal and adhesive properties from another population that are only efficient at chemotaxis, indicating a loss in polarity. Understanding the regulation of polarity in the context of cell motility is important in order to improve control and inhibition of invasion and metastasis.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Línea Celular Tumoral , Movimiento Celular , Quimiotaxis , Genes Relacionados con las Neoplasias , Humanos , Cinética , Microscopía Fluorescente , Análisis de Secuencia por Matrices de Oligonucleótidos
18.
J Alzheimers Dis ; 42(4): 1443-60, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25024349

RESUMEN

BACKGROUND: Imaging of human brain as well as cellular and animal models has highlighted a role for the actin cytoskeleton in the development of cell pathology in Alzheimer's disease (AD). Rods and aggregates of the actin-associated protein cofilin are abundant in grey matter of postmortem AD brain and rods are found inside neurites in animal and cell models of AD. OBJECTIVE: We sought further understanding of the significance of cofilin rods/aggregates to the disease process: Do rods/aggregates correlate with AD progression and the development of hallmark neurofibrillary tangles and neuropil threads? Are cofilin rods/aggregates found in the same neurites as hyperphosphorylated tau? METHODS: The specificity of rods/aggregates to AD compared with general aging and their spatial relationship to tau protein was examined in postmortem human hippocampus, inferior temporal cortex, and anterior cingulate cortex. RESULTS: The presence of cofilin rods/aggregates correlated with the extent of tau pathology independent of patient age. Densities of rods/aggregates were fourfold greater in AD compared with aged-matched control brains and rods/aggregates were significantly larger in AD brain. We did not find evidence for our hypothesis that intracellular cofilin rods are localized to tau-positive neuropil threads. Instead, data suggest the involvement of microglia in the clearance of cofilin rods/aggregates and/or in their synthesis in and around amyloid plaques and surrounding neuropil. CONCLUSION: Cofilin rods and aggregates signify events initiated early in the pathological cascade. Further definition of the mechanisms leading to their formation in the human brain will provide insights into the cellular causes of AD.


Asunto(s)
Factores Despolimerizantes de la Actina/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Encéfalo/patología , Anciano , Anciano de 80 o más Años , Envejecimiento/metabolismo , Envejecimiento/patología , Western Blotting , Encéfalo/irrigación sanguínea , Femenino , Técnica del Anticuerpo Fluorescente , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Imagenología Tridimensional , Proteínas de Filamentos Intermediarios/metabolismo , Masculino , Microglía/metabolismo , Microglía/patología , Microscopía Confocal , Persona de Mediana Edad , Proteínas tau/metabolismo
19.
Schizophr Bull ; 40(6): 1272-84, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24442851

RESUMEN

Stress has been linked to the pathogenesis of schizophrenia. Genetic variation in neuregulin 1 (NRG1) increases the risk of developing schizophrenia and may help predict which high-risk individuals will transition to psychosis. NRG1 also modulates sensorimotor gating, a schizophrenia endophenotype. We used an animal model to demonstrate that partial genetic deletion of Nrg1 interacts with stress to promote neurobehavioral deficits of relevance to schizophrenia. Nrg1 heterozygous (HET) mice displayed greater acute stress-induced anxiety-related behavior than wild-type (WT) mice. Repeated stress in adolescence disrupted the normal development of higher prepulse inhibition of startle selectively in Nrg1 HET mice but not in WT mice. Further, repeated stress increased dendritic spine density in pyramidal neurons of the medial prefrontal cortex (mPFC) selectively in Nrg1 HET mice. Partial genetic deletion of Nrg1 also modulated the adaptive response of the hypothalamic-pituitary-adrenal axis to repeated stress, with Nrg1 HET displaying a reduced repeated stress-induced level of plasma corticosterone than WT mice. Our results demonstrate that Nrg1 confers vulnerability to repeated stress-induced sensorimotor gating deficits, dendritic spine growth in the mPFC, and an abberant endocrine response in adolescence.


Asunto(s)
Espinas Dendríticas , Sistema Hipotálamo-Hipofisario/fisiopatología , Neurregulina-1/fisiología , Sistema Hipófiso-Suprarrenal/fisiopatología , Corteza Prefrontal/citología , Filtrado Sensorial/fisiología , Estrés Psicológico/fisiopatología , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Neurregulina-1/genética , Inhibición Prepulso/fisiología
20.
Nat Commun ; 5: 5452, 2014 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-25406832

RESUMEN

The evolutionarily conserved peripheral benzodiazepine receptor (PBR), or 18-kDa translocator protein (TSPO), is thought to be essential for cholesterol transport and steroidogenesis, and thus life. TSPO has been proposed as a biomarker of neuroinflammation and a new drug target in neurological diseases ranging from Alzheimer's disease to anxiety. Here we show that global C57BL/6-Tspo(tm1GuWu(GuwiyangWurra))-knockout mice are viable with normal growth, lifespan, cholesterol transport, blood pregnenolone concentration, protoporphyrin IX metabolism, fertility and behaviour. However, while the activation of microglia after neuronal injury appears to be unimpaired, microglia from (GuwiyangWurra)TSPO knockouts produce significantly less ATP, suggesting reduced metabolic activity. Using the isoquinoline PK11195, the ligand originally used for the pharmacological and structural characterization of the PBR/TSPO, and the imidazopyridines CLINDE and PBR111, we demonstrate the utility of (GuwiyangWurra)TSPO knockouts to provide robust data on drug specificity and selectivity, both in vitro and in vivo, as well as the mechanism of action of putative TSPO-targeting drugs.


Asunto(s)
Glándulas Suprarrenales/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Riñón/diagnóstico por imagen , Microglía/metabolismo , Receptores de GABA/genética , Adenosina Trifosfato/metabolismo , Animales , Conducta Animal , Colesterol/metabolismo , Fertilidad/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tomografía de Emisión de Positrones , Pregnenolona/sangre , Protoporfirinas/metabolismo , Bazo/diagnóstico por imagen , Testículo/diagnóstico por imagen , Imagen de Cuerpo Entero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA