Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nature ; 592(7852): 116-121, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33106671

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein substitution D614G became dominant during the coronavirus disease 2019 (COVID-19) pandemic1,2. However, the effect of this variant on viral spread and vaccine efficacy remains to be defined. Here we engineered the spike D614G substitution in the USA-WA1/2020 SARS-CoV-2 strain, and found that it enhances viral replication in human lung epithelial cells and primary human airway tissues by increasing the infectivity and stability of virions. Hamsters infected with SARS-CoV-2 expressing spike(D614G) (G614 virus) produced higher infectious titres in nasal washes and the trachea, but not in the lungs, supporting clinical evidence showing that the mutation enhances viral loads in the upper respiratory tract of COVID-19 patients and may increase transmission. Sera from hamsters infected with D614 virus exhibit modestly higher neutralization titres against G614 virus than against D614 virus, suggesting that the mutation is unlikely to reduce the ability of vaccines in clinical trials to protect against COVID-19, and that therapeutic antibodies should be tested against the circulating G614 virus. Together with clinical findings, our work underscores the importance of this variant in viral spread and its implications for vaccine efficacy and antibody therapy.


Asunto(s)
COVID-19/transmisión , COVID-19/virología , Aptitud Genética , Mutación , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/genética , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/uso terapéutico , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , Cricetinae , Modelos Animales de Enfermedad , Humanos , Pulmón/virología , Masculino , Mesocricetus/virología , Modelos Biológicos , Mucosa Nasal/virología , Pruebas de Neutralización , Estabilidad Proteica , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Técnicas de Cultivo de Tejidos , Tráquea/virología , Carga Viral , Virión/química , Virión/patogenicidad , Virión/fisiología , Replicación Viral/genética
2.
Proc Natl Acad Sci U S A ; 117(33): 20190-20197, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32747564

RESUMEN

Arboviruses maintain high mutation rates due to lack of proofreading ability of their viral polymerases, in some cases facilitating adaptive evolution and emergence. Here we show that, just before its 2013 spread to the Americas, Zika virus (ZIKV) underwent an envelope protein V473M substitution (E-V473M) that increased neurovirulence, maternal-to-fetal transmission, and viremia to facilitate urban transmission. A preepidemic Asian ZIKV strain (FSS13025 isolated in Cambodia in 2010) engineered with the V473M substitution significantly increased neurovirulence in neonatal mice and produced higher viral loads in the placenta and fetal heads in pregnant mice. Conversely, an epidemic ZIKV strain (PRVABC59 isolated in Puerto Rico in 2015) engineered with the inverse M473V substitution reversed the pathogenic phenotypes. Although E-V473M did not affect oral infection of Aedes aegypti mosquitoes, competition experiments in cynomolgus macaques showed that this mutation increased its fitness for viremia generation, suggesting adaptive evolution for human viremia and hence transmission. Mechanistically, the V473M mutation, located at the second transmembrane helix of the E protein, enhances virion morphogenesis. Overall, our study revealed E-V473M as a critical determinant for enhanced ZIKV virulence, intrauterine transmission during pregnancy, and viremia to facilitate urban transmission.


Asunto(s)
Epidemias , Proteínas del Envoltorio Viral/genética , Infección por el Virus Zika/virología , Virus Zika/genética , Virus Zika/patogenicidad , Animales , Femenino , Humanos , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Filogenia , Embarazo , Carga Viral , Virulencia , Virus Zika/fisiología , Infección por el Virus Zika/epidemiología
6.
Cell Rep ; 39(2): 110655, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35417697

RESUMEN

Zika virus (ZIKV) and dengue virus (DENV) are arthropod-borne pathogenic flaviviruses that co-circulate in many countries. To understand some of the pressures that influence ZIKV evolution, we mimic the natural transmission cycle by repeating serial passaging of ZIKV through cultured mosquito cells and either DENV-naive or DENV-immune mice. Compared with wild-type ZIKV, the strains passaged under both conditions exhibit increased pathogenesis in DENV-immune mice. Application of reverse genetics identifies an isoleucine-to-valine mutation (I39V) in the NS2B proteins of both passaged strains that confers enhanced fitness and escape from pre-existing DENV immunity. Introduction of I39V or I39T, a naturally occurring homologous mutation detected in recent ZIKV isolates, increases the replication of wild-type ZIKV in human neuronal precursor cells and laboratory-raised mosquitoes. Our data indicate that ZIKV strains with enhanced transmissibility and pathogenicity can emerge in DENV-naive or -immune settings, and that NS2B-I39 mutants may represent ZIKV variants of interest.


Asunto(s)
Virus del Dengue , Dengue , Infección por el Virus Zika , Virus Zika , Animales , Anticuerpos Antivirales , Reacciones Cruzadas , Virus del Dengue/genética , Ratones , Mutación/genética , Virus Zika/genética
7.
Diagn Microbiol Infect Dis ; 99(2): 115248, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33130510

RESUMEN

As new tests and technologies advance our understanding and diagnostic capabilities of the severe acute respiratory syndrome coronavirus 2 and the coronavirus disease 2019, they must be appropriately validated to make sure test performance is following manufacturer claims. In this study, we evaluated the Vazyme 2019-nCoV IgG/IgM Detection Kit, which is a lateral flow assay (LFA), by the plaque reduction neutralization test (PRNT) using 100 patient plasma/serum samples. As compared to the PRNT results, the Vazyme LFA had 95.9% sensitivity and 96.1% specificity. Along with the increased need for rapid, effective, and affordable point of care tests to help provide meaningful epidemiological data, we demonstrated that the Vazyme LFA performed well on IgG detection but cannot be judged on the performance of IgM detection using PRNT alone. However, our observation of the low IgM-positive rate supported the poor performance of IgM detection of this LFA which led to the disapproval of its Emergency Use Authorization recently.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/diagnóstico , Pruebas de Neutralización/métodos , SARS-CoV-2/inmunología , Ensayo de Placa Viral/métodos , Humanos , Inmunoensayo/métodos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Pruebas en el Punto de Atención
8.
bioRxiv ; 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33442691

RESUMEN

Rapidly spreading variants of SARS-CoV-2 that have arisen in the United Kingdom and South Africa share the spike N501Y substitution, which is of particular concern because it is located in the viral receptor binding site for cell entry and increases binding to the receptor (angiotensin converting enzyme 2). We generated isogenic N501 and Y501 SARS-CoV-2. Sera of 20 participants in a previously reported trial of the mRNA-based COVID-19 vaccine BNT162b2 had equivalent neutralizing titers to the N501 and Y501 viruses.

9.
bioRxiv ; 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33532771

RESUMEN

We engineered three SARS-CoV-2 viruses containing key spike mutations from the newly emerged United Kingdom (UK) and South African (SA) variants: N501Y from UK and SA; 69/70-deletion+N501Y+D614G from UK; and E484K+N501Y+D614G from SA. Neutralization geometric mean titers (GMTs) of twenty BTN162b2 vaccine-elicited human sera against the three mutant viruses were 0.81- to 1.46-fold of the GMTs against parental virus, indicating small effects of these mutations on neutralization by sera elicited by two BNT162b2 doses.

10.
NPJ Vaccines ; 6(1): 44, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33767200

RESUMEN

Initial COVID-19 vaccine candidates were based on the original sequence of SARS-CoV-2. However, the virus has since accumulated mutations, among which the spike D614G is dominant in circulating virus, raising questions about potential virus escape from vaccine-elicited immunity. Here, we report that the D614G mutation modestly reduced (1.7-2.4-fold) SARS-CoV-2 neutralization by BNT162b2 vaccine-elicited mouse, rhesus, and human sera, concurring with the 95% vaccine efficacy observed in clinical trial.

11.
NPJ Vaccines ; 6(1): 27, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33597526

RESUMEN

Although live attenuated vaccines (LAVs) have been effective in the control of flavivirus infections, to date they have been excluded from Zika virus (ZIKV) vaccine trials due to safety concerns. We have previously reported two ZIKV mutants, each of which has a single substitution in either envelope (E) glycosylation or nonstructural (NS) 4B P36 and displays a modest reduction in mouse neurovirulence and neuroinvasiveness, respectively. Here, we generated a ZIKV mutant, ZE4B-36, which combines mutations in both E glycosylation and NS4B P36. The ZE4B-36 mutant is stable and attenuated in viral replication. Next-generation sequence analysis showed that the attenuating mutations in the E and NS4B proteins are retained during serial cell culture passages. The mutant exhibits a significant reduction in neuroinvasiveness and neurovirulence and low infectivity in mosquitoes. It induces robust ZIKV-specific memory B cell, antibody, and T cell-mediated immune responses in type I interferon receptor (IFNR) deficient mice. ZIKV-specific T cell immunity remains strong months post-vaccination in wild-type C57BL/6 (B6) mice. Vaccination with ZE4B-36 protects mice from ZIKV-induced diseases and vertical transmission. Our results suggest that combination mutations in E glycosylation and NS4B P36 contribute to a candidate LAV with significantly increased safety but retain strong immunogenicity for prevention and control of ZIKV infection.

12.
Nat Med ; 27(4): 620-621, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33558724

RESUMEN

We engineered three severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viruses containing key spike mutations from the newly emerged United Kingdom (UK) and South African (SA) variants: N501Y from UK and SA; 69/70-deletion + N501Y + D614G from UK; and E484K + N501Y + D614G from SA. Neutralization geometric mean titers (GMTs) of 20 BTN162b2 vaccine-elicited human sera against the three mutant viruses were 0.81- to 1.46-fold of the GMTs against parental virus, indicating small effects of these mutations on neutralization by sera elicited by two BNT162b2 doses.


Asunto(s)
Vacunas contra la COVID-19/inmunología , Mutación , Pruebas de Neutralización , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Vacuna BNT162 , Humanos , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación
13.
JCI Insight ; 6(1)2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33232299

RESUMEN

Glioblastoma multiforme (GBM) is a fatal human cancer in part because GBM stem cells are resistant to therapy and recurrence is inevitable. Previously, we demonstrated Zika virus (ZIKV) targets GBM stem cells and prevents death of mice with gliomas. Here, we evaluated the immunological basis of ZIKV-mediated protection against GBM. Introduction of ZIKV into the brain tumor increased recruitment of CD8+ T and myeloid cells to the tumor microenvironment. CD8+ T cells were required for ZIKV-dependent tumor clearance because survival benefits were lost with CD8+ T cell depletion. Moreover, while anti-PD-1 antibody monotherapy moderately improved tumor survival, when coadministered with ZIKV, survival increased. ZIKV-mediated tumor clearance also resulted in durable protection against syngeneic tumor rechallenge, which also depended on CD8+ T cells. To address safety concerns, we generated an immune-sensitized ZIKV strain, which was effective alone or in combination with immunotherapy. Thus, oncolytic ZIKV treatment can be leveraged by immunotherapies, which may prompt combination treatment paradigms for adult patients with GBM.


Asunto(s)
Neoplasias Encefálicas/terapia , Linfocitos T CD8-positivos/inmunología , Glioblastoma/terapia , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Viroterapia Oncolítica/métodos , Virus Oncolíticos/inmunología , Virus Zika/inmunología , Animales , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Terapia Combinada , Femenino , Glioblastoma/inmunología , Glioblastoma/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/patología , Neoplasias Experimentales/terapia , Microambiente Tumoral/inmunología
14.
Curr Opin Virol ; 44: 7-15, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32563700

RESUMEN

In 2015-2016, the little known Zika virus (ZIKV) caused an epidemic, in which it became recognized as a unique human pathogen associated with a range of devastating congenital abnormalities collectively categorized as congenital Zika syndrome (CZS). In adults, the virus can trigger the autoimmune disorder Guillain-Barré syndrome (GBS), characterized by ascending paralysis. In February 2016, the World Health Organization (WHO) declared ZIKV to be a Public Health Emergency of International Concern. The global public health problem prompted academia, industry, and governments worldwide to initiate development of an effective vaccine to prevent another ZIKV epidemic that would put millions at risk. The development of reverse genetic systems for the study and manipulation of RNA viral genomes has revolutionized the field of virology, providing platforms for vaccine and antiviral development. In this review, we discuss the impact of reverse genetic systems on the rapid progress of ZIKV vaccines and antiviral therapeutics.


Asunto(s)
Genética Inversa/métodos , Vacunas Virales/genética , Infección por el Virus Zika/prevención & control , Infección por el Virus Zika/terapia , Virus Zika/genética , Animales , Antivirales/uso terapéutico , Síndrome de Guillain-Barré/inmunología , Síndrome de Guillain-Barré/terapia , Síndrome de Guillain-Barré/virología , Humanos , Ratones , ARN Viral/genética , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología , Virus Zika/inmunología , Virus Zika/patogenicidad , Infección por el Virus Zika/complicaciones
15.
Nat Commun ; 11(1): 4059, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32792628

RESUMEN

Virus neutralization remains the gold standard for determining antibody efficacy. Therefore, a high-throughput assay to measure SARS-CoV-2 neutralizing antibodies is urgently needed for COVID-19 serodiagnosis, convalescent plasma therapy, and vaccine development. Here, we report on a fluorescence-based SARS-CoV-2 neutralization assay that detects SARS-CoV-2 neutralizing antibodies in COVID-19 patient specimens and yields comparable results to plaque reduction neutralizing assay, the gold standard of serological testing. The fluorescence-based neutralization assay is specific to measure COVID-19 neutralizing antibodies without cross reacting with patient specimens with other viral, bacterial, or parasitic infections. Collectively, our approach offers a rapid platform that can be scaled to screen people for antibody protection from COVID-19, a key parameter necessary to safely reopen local communities.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Betacoronavirus/inmunología , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/diagnóstico , Neumonía Viral/diagnóstico , Vacunas Virales/inmunología , Animales , COVID-19 , Prueba de COVID-19 , Vacunas contra la COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/virología , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Pandemias/prevención & control , Neumonía Viral/prevención & control , Neumonía Viral/virología , SARS-CoV-2 , Pruebas Serológicas/métodos , Células Vero , Ensayo de Placa Viral
16.
bioRxiv ; 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32511386

RESUMEN

Virus neutralization remains the gold standard for determining antibody efficacy. Therefore, a high-throughput assay to measure SARS-CoV-2 neutralizing antibodies is urgently needed for COVID-19 serodiagnosis, convalescent plasma therapy, and vaccine development. Here we report on a fluorescence-based SARS-CoV-2 neutralization assay that detects SARS-CoV-2 neutralizing antibodies in COVID-19 patient specimens and yields comparable results to plaque reduction neutralizing assay, the gold standard of serological testing. Our approach offers a rapid platform that can be scaled to screen people for antibody protection from COVID-19, a key parameter necessary to safely reopen local communities.

17.
Emerg Microbes Infect ; 9(1): 1023-1033, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32419649

RESUMEN

The Asian lineage of Zika virus (ZIKV) is responsible for the recent epidemics in the Americas and severe disease, whereas the African lineage of ZIKV has not been reported to cause epidemics or severe disease. We constructed a cDNA infectious clone (IC) of an African ZIKV strain, which, together with our previously developed Asian ZIKV strain IC, allowed us to engineer chimeric viruses by swapping the structural and non-structural genes between the two lineages. Recombinant parental and chimeric viruses were analyzed in A129 and newborn CD1 mouse models. In the A129 mice, the African strain developed higher viremia, organ viral loading, and mortality rate. In CD1 mice, the African strain exhibited a higher neurovirulence than the Asian strain. A chimeric virus containing the structural genes from the African strain is more virulent than the Asian strain, whereas a chimeric virus containing the non-structural genes from the African strain exhibited a virulence comparable to the Asian strain. These results suggest that (i) African strain is more virulent than Asian strain and (ii) viral structural genes primarily determine the virulence difference between the two lineages in mouse models. Other factors may contribute to the discrepancy between the mouse and epidemic results.


Asunto(s)
Genes Virales , Variación Genética , Virulencia/genética , Infección por el Virus Zika/patología , Virus Zika , África , Américas/epidemiología , Animales , Asia , Chlorocebus aethiops , Modelos Animales de Enfermedad , Humanos , Ratones , Células Vero , Virus Zika/genética , Virus Zika/aislamiento & purificación , Virus Zika/patogenicidad
18.
Nat Commun ; 11(1): 5214, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060595

RESUMEN

A high-throughput platform would greatly facilitate coronavirus disease 2019 (COVID-19) serological testing and antiviral screening. Here we present a high-throughput nanoluciferase severe respiratory syndrome coronavirus 2 (SARS-CoV-2-Nluc) that is genetically stable and replicates similarly to the wild-type virus in cell culture. SARS-CoV-2-Nluc can be used to measure neutralizing antibody activity in patient sera within 5 hours, and it produces results in concordance with a plaque reduction neutralization test (PRNT). Additionally, using SARS-CoV-2-Nluc infection of A549 cells expressing human ACE2 receptor (A549-hACE2), we show that the assay can be used for antiviral screening. Using the optimized SARS-CoV-2-Nluc assay, we evaluate a panel of antivirals and other anti-infective drugs, and we identify nelfinavir, rupintrivir, and cobicistat as the most selective inhibitors of SARS-CoV-2-Nluc (EC50 0.77 to 2.74 µM). In contrast, most of the clinically approved antivirals, including tenofovir alafenamide, emtricitabine, sofosbuvir, ledipasvir, and velpatasvir were inactive at concentrations up to 10 µM. Collectively, this high-throughput platform represents a reliable tool for rapid neutralization testing and antiviral screening for SARS-CoV-2.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Betacoronavirus/aislamiento & purificación , Infecciones por Coronavirus/diagnóstico , Ensayos Analíticos de Alto Rendimiento/métodos , Pruebas de Neutralización/métodos , Neumonía Viral/diagnóstico , Células A549 , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Betacoronavirus/genética , Betacoronavirus/inmunología , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Humanos , Luciferasas/genética , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/virología , SARS-CoV-2 , Células Vero , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
19.
bioRxiv ; 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32607511

RESUMEN

A high-throughput platform would greatly facilitate COVID-19 serological testing and antiviral screening. Here we report a nanoluciferase SARS-CoV-2 (SARS-CoV-2-Nluc) that is genetically stable and replicates similarly to the wild-type virus in cell culture. We demonstrate that the optimized reporter virus assay in Vero E6 cells can be used to measure neutralizing antibody activity in patient sera and produces results in concordance with a plaque reduction neutralization test (PRNT). Compared with the low-throughput PRNT (3 days), the SARS-CoV-2-Nluc assay has substantially shorter turnaround time (5 hours) with a high-throughput testing capacity. Thus, the assay can be readily deployed for large-scale vaccine evaluation and neutralizing antibody testing in humans. Additionally, we developed a high-throughput antiviral assay using SARS-CoV-2-Nluc infection of A549 cells expressing human ACE2 receptor (A549-hACE2). When tested against this reporter virus, remdesivir exhibited substantially more potent activity in A549-hACE2 cells compared to Vero E6 cells (EC 50 0.115 vs 1.28 µM), while this difference was not observed for chloroquine (EC 50 1.32 vs 3.52 µM), underscoring the importance of selecting appropriate cells for antiviral testing. Using the optimized SARS-CoV-2-Nluc assay, we evaluated a collection of approved and investigational antivirals and other anti-infective drugs. Nelfinavir, rupintrivir, and cobicistat were identified as the most selective inhibitors of SARS-CoV-2-Nluc (EC 50 0.77 to 2.74 µM). In contrast, most of the clinically approved antivirals, including tenofovir alafenamide, emtricitabine, sofosbuvir, ledipasvir, and velpatasvir were inactive at concentrations up to 10 µM. Collectively, this high-throughput platform represents a reliable tool for rapid neutralization testing and antiviral screening for SARS-CoV-2.

20.
bioRxiv ; 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32908978

RESUMEN

A spike protein mutation D614G became dominant in SARS-CoV-2 during the COVID-19 pandemic. However, the mutational impact on viral spread and vaccine efficacy remains to be defined. Here we engineer the D614G mutation in the SARS-CoV-2 USA-WA1/2020 strain and characterize its effect on viral replication, pathogenesis, and antibody neutralization. The D614G mutation significantly enhances SARS-CoV-2 replication on human lung epithelial cells and primary human airway tissues, through an improved infectivity of virions with the spike receptor-binding domain in an "up" conformation for binding to ACE2 receptor. Hamsters infected with D614 or G614 variants developed similar levels of weight loss. However, the G614 virus produced higher infectious titers in the nasal washes and trachea, but not lungs, than the D614 virus. The hamster results confirm clinical evidence that the D614G mutation enhances viral loads in the upper respiratory tract of COVID-19 patients and may increases transmission. For antibody neutralization, sera from D614 virus-infected hamsters consistently exhibit higher neutralization titers against G614 virus than those against D614 virus, indicating that (i) the mutation may not reduce the ability of vaccines in clinical trials to protect against COVID-19 and (ii) therapeutic antibodies should be tested against the circulating G614 virus before clinical development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA