Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chem Soc Rev ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109571

RESUMEN

Surface enhanced Raman spectroscopy (SERS) is meeting the requirements in biomedical science being a highly sensitive and specific analytical tool. By employing portable Raman systems in combination with customized sample pre-treatment, point-of-care-testing (POCT) becomes feasible. Powerful SERS-active sensing surfaces with high stability and modification layers if required are available for testing and application in complex biological matrices such as body fluids, cells or tissues. This review summarizes the current state in sample collection and pretreatment in SERS detection protocols, SERS detection schemes, i.e. direct and indirect SERS as well as targeted and non-targeted SERS, and SERS-active sensing surfaces. Moreover, the recent developments and advances of SERS in biomedical application scenarios, such as infectious diseases, cancer diagnostics and therapeutic drug monitoring is given, which enables the readers to identify the sample collection and preparation protocols, SERS substrates and detection strategies that are best-suited for their specific applications in biomedicine.

2.
Analyst ; 149(3): 885-894, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38179644

RESUMEN

The precise identification and differentiation of peri-implant diseases, without the need for intrusive procedures, is crucial for the successful clinical treatment and overall durability of dental implants. This work introduces a novel approach that combines surface-enhanced Raman scattering (SERS) spectroscopy with advanced chemometrics to analyse peri-implant crevicular fluid (PICF) samples. The primary purpose is to offer an unbiased evaluation of implant health. A detailed investigation was performed on PICF samples obtained from a cohort of patients exhibiting different levels of peri-implant health, including those with healthy implants, implants impacted by peri-implantitis, and implants with peri-implant mucositis. The obtained SERS spectra were analysed using canonical-powered partial least squares (CPPLS) to identify unique chemical characteristics associated with each inflammatory state. Significantly, our research findings unveil the presence of a common inflammatory SERS spectral pattern in cases of peri-implantitis and peri-implant mucositis. Furthermore, the SERS-based scores obtained from CPPLS were combined with established clinical scores and subjected to a linear discriminant analysis (LDA) classifier. Repeated double cross-validation was used to validate the method's capacity to discriminate different implant conditions. The integrated approach showcased high sensitivity and specificity and an overall balanced accuracy of 92%, demonstrating its potential to serve as a non-invasive diagnostic tool for real-time implant monitoring and early detection of inflammatory conditions.


Asunto(s)
Mucositis , Periimplantitis , Humanos , Periimplantitis/diagnóstico , Espectrometría Raman
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124390, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38749203

RESUMEN

Label-free Surface Enhanced Raman Spectroscopy (SERS) is a rapid technique that has been extensively applied in clinical diagnosis and biomedicine for the analysis of biofluids. The purpose of this approach relies on the ability to detect specific "metabolic fingerprints" of complex biological samples, but the full potential of this technique in diagnostics is yet to be exploited, mainly because of the lack of common analytical protocols for sample preparation and analysis. Variation of experimental parameters, such as substrate type, laser wavelength and sample processing can greatly influence spectral patterns, making results from different research groups difficult to compare. This study aims at making a step toward a standardization of the protocols in the analysis of human serum samples with Ag nanoparticles, by directly comparing the SERS spectra obtained from five different methods in which parameters like laser power, nanoparticle concentration, incubation/deproteinization steps and type of substrate used vary. Two protocols are the most used in the literature, and the other three are "in-house" protocols proposed by our group; all of them are employed to analyze the same human serum sample. The experimental results show that all protocols yield spectra that share the same overall spectral pattern, conveying the same biochemical information, but they significantly differ in terms of overall spectral intensity, repeatability, and preparation steps of the sample. A Principal Component Analysis (PCA) was performed revealing that protocol 3 and protocol 1 have the least variability in the dataset, while protocol 2 and 4 are the least repeatable.


Asunto(s)
Nanopartículas del Metal , Análisis de Componente Principal , Plata , Espectrometría Raman , Humanos , Espectrometría Raman/métodos , Nanopartículas del Metal/química , Plata/química , Suero/química
4.
Toxics ; 12(2)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38393208

RESUMEN

(1) Background: Monitoring effluent in water treatment plants has a key role in identifying potential pollutants that might be released into the environment. A non-target analysis approach can be used for identifying unknown substances and source-specific multipollutant signatures. (2) Methods: Urban and industrial wastewater effluent were analyzed by HPLC-HRMS for non-target analysis. The anomalous infiltration of industrial wastewater into urban wastewater was investigated by analyzing the mass spectra data of "unknown common" compounds using principal component analysis (PCA) and the Self-Organizing Map (SOM) AI tool. The outcomes of the models were compared. (3) Results: The outlier detection was more straightforward in the SOM model than in the PCA one. The differences among the samples could not be completely perceived in the PCA model. Moreover, since PCA involves the calculation of new variables based on the original experimental ones, it is not possible to reconstruct a chromatogram that displays the recurring patterns in the urban WTP samples. This can be achieved using the SOM outcomes. (4) Conclusions: When comparing a large number of samples, the SOM AI tool is highly efficient in terms of calculation, visualization, and identifying outliers. Interpreting PCA visualization and outlier detection becomes challenging when dealing with a large sample size.

5.
Microorganisms ; 12(5)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38792794

RESUMEN

Studies on bioaerosol bacterial biodiversity have relevance in both ecological and health contexts, and molecular methods, such as 16S rRNA gene-based barcoded sequencing, provide efficient tools for the analysis of airborne bacterial communities. Standardized methods for sampling and analysis of bioaerosol DNA are lacking, thus hampering the comparison of results from studies implementing different devices and procedures. Three samplers that use gelatin filtration, swirling aerosol collection, and condensation growth tubes for collecting bioaerosol at an aeration tank of a wastewater treatment plant in Trieste (Italy) were used to determine the bacterial biodiversity. Wastewater samples were collected directly from the untreated sewage to obtain a true representation of the microbiological community present in the plant. Different samplers and collection media provide an indication of the different grades of biodiversity, with condensation growth tubes and DNA/RNA shieldTM capturing the richer bacterial genera. Overall, in terms of relative abundance, the air samples have a lower number of bacterial genera (64 OTUs) than the wastewater ones (75 OTUs). Using the metabarcoding approach to aerosol samples, we provide the first preliminary step toward the understanding of a significant diversity between different air sampling systems, enabling the scientific community to orient research towards the most informative sampling strategy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA