RESUMEN
Utilization of tumor-only sequencing has expanded in pediatric cancer patients, which can lead to identification of pathogenic variants in genes that may be germline and/or have uncertain relevance to the tumor in question, such as the homologous recombination (HR) pathway genes BRCA1/2. We identified patients with pathogenic BRCA1/2 mutations from somatic tumor sequencing, and performed additional germline sequencing to assess for the presence of loss of heterozygosity (LOH). Of seven patients identified, four (57.1%) mutations were found in the germline and none had associated LOH. Our data suggest that BRCA1/2 mutations identified in this context are likely incidental findings.
Asunto(s)
Neoplasias del Sistema Nervioso Central , Neoplasias Ováricas , Femenino , Humanos , Niño , Proteína BRCA1/genética , Neoplasias Ováricas/patología , Mutación de Línea Germinal , Proteína BRCA2/genética , Pérdida de HeterocigocidadRESUMEN
INTRODUCTION: Tissue from pediatric solid tumors is in high demand for use in high-impact research studies, making the allocation of tissue from an anatomic pathology laboratory challenging. We designed, implemented, and assessed an interdepartmental process to optimize tissue allocation of pediatric solid tumors for both clinical care and research. METHODS: Oncologists, pathologists, surgeons, interventional radiologists, pathology technical staff, and clinical research coordinators participated in the workflow design. Procedures were created to address patient identification and consent, prioritization of protocols, electronic communication of requests, tissue preparation, and distribution. Pathologists were surveyed about the value of the new workflow. RESULTS: Over a 5-year period, 644 pediatric solid tumor patients consented to one or more studies requesting archival or fresh tissue. Patients had a variety of tumor types, with many rare and singular diagnoses. Sixty-seven percent of 1768 research requests were fulfilled. Requests for archival tissue were fulfilled at a significantly higher rate than those for fresh tissue (P > .001), and requests from resection specimens were fulfilled at a significantly higher rate than those from biopsies (P > .0001). In an anonymous survey, seven of seven pathologists reported that the process had improved since the introduction of the electronic communication model. CONCLUSIONS: A collaborative and informed model for tissue allocation is successful in distributing archival and fresh tissue for clinical research studies. Our workflows and policies have gained pathologists' approval and streamlined our processes. As clinical and research programs evolve, a thoughtful tissue allocation process will facilitate ongoing research.
Asunto(s)
Investigación Biomédica/métodos , Neoplasias/patología , Asignación de Recursos/métodos , Manejo de Especímenes/métodos , Biopsia , Niño , Humanos , Neoplasias/diagnóstico , Bancos de TejidosRESUMEN
PURPOSE OF REVIEW: The current review describes recent advances and unique challenges in precision medicine for pediatric cancers and highlights clinical trials assessing the clinical impact of targeted therapy matched to molecular alterations identified by tumor profiling. RECENT FINDINGS: Multiple prospective clinical sequencing studies in pediatric oncology have been reported in the last 2 years. These studies demonstrated feasibility of sequencing in the clinic and revealed a rate of actionable variants that justifies the development of precision trials for childhood cancer. A number of precision medicine trials are recently completed, underway or in development and these will be reviewed herein, with a focus on highlighting aspects of precision medicine trial design relevant to pediatric oncology. SUMMARY: The primary results of the first round of pediatric precision oncology clinical trials will provide us with a greater understanding of the clinical impact of linking tumor profiling to selection of targeted therapies. The aggregation of sequencing and clinical data from these trials and the results of biologic investigations linked to these trials will drive further discoveries and broaden opportunities for precision medicine for children with cancer.
Asunto(s)
Antineoplásicos/uso terapéutico , Oncología Médica/tendencias , Terapia Molecular Dirigida/tendencias , Neoplasias/tratamiento farmacológico , Pediatría/tendencias , Medicina de Precisión/tendencias , Biomarcadores de Tumor/genética , Niño , Humanos , Oncología Médica/métodos , Terapia Molecular Dirigida/métodos , Neoplasias/genética , Pediatría/métodos , Medicina de Precisión/métodosRESUMEN
To inform clinical trial design and real-world precision pediatric oncology practice, we classified diagnoses, assessed the landscape of mutations, and identified genomic variants matching trials in a large unselected institutional cohort of solid tumors patients sequenced at Dana-Farber / Boston Children's Cancer and Blood Disorders Center. Tumors were sequenced with OncoPanel, a targeted next-generation DNA sequencing panel. Diagnoses were classified according to the International Classification of Diseases for Oncology (ICD-O-3.2). Over 6.5 years, 888 pediatric cancer patients with 95 distinct diagnoses had successful tumor sequencing. Overall, 33% (n = 289/888) of patients had at least 1 variant matching a precision oncology trial protocol, and 14% (41/289) were treated with molecularly targeted therapy. This study highlights opportunities to use genomic data from hospital-based sequencing performed either for research or clinical care to inform ongoing and future precision oncology clinical trials. Furthermore, the study results emphasize the importance of data sharing to define the genomic landscape and targeted treatment opportunities for the large group of rare pediatric cancers we encounter in clinical practice.
Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Difusión de la Información , Neoplasias , Medicina de Precisión , Humanos , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Niño , Medicina de Precisión/métodos , Masculino , Preescolar , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Adolescente , Lactante , Mutación , Ensayos Clínicos como Asunto , Terapia Molecular Dirigida/métodos , Genómica/métodos , Recién NacidoRESUMEN
PURPOSE: Osteosarcoma risk stratification, on the basis of the presence of metastatic disease at diagnosis and histologic response to chemotherapy, has remained unchanged for four decades, does not include genomic features, and has not facilitated treatment advances. We report on the genomic features of advanced osteosarcoma and provide evidence that genomic alterations can be used for risk stratification. MATERIALS AND METHODS: In a primary analytic patient cohort, 113 tumor and 69 normal samples from 92 patients with high-grade osteosarcoma were sequenced with OncoPanel, a targeted next-generation sequencing assay. In this primary cohort, we assessed the genomic landscape of advanced disease and evaluated the correlation between recurrent genomic events and outcome. We assessed whether prognostic associations identified in the primary cohort were maintained in a validation cohort of 86 patients with localized osteosarcoma tested with MSK-IMPACT. RESULTS: In the primary cohort, 3-year overall survival (OS) was 65%. Metastatic disease, present in 33% of patients at diagnosis, was associated with poor OS (P = .04). The most frequently altered genes in the primary cohort were TP53, RB1, MYC, CCNE1, CCND3, CDKN2A/B, and ATRX. Mutational signature 3 was present in 28% of samples. MYC amplification was associated with a worse 3-year OS in both the primary cohort (P = .015) and the validation cohort (P = .012). CONCLUSION: The most frequently occurring genomic events in advanced osteosarcoma were similar to those described in prior reports. MYC amplification, detected with clinical targeted next-generation sequencing panel tests, is associated with poorer outcomes in two independent cohorts.
Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Neoplasias Óseas/diagnóstico , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Osteosarcoma/diagnóstico , Osteosarcoma/genética , Osteosarcoma/patología , Pronóstico , Amplificación de GenesRESUMEN
PURPOSE: Multiple FGFR inhibitors are currently in clinical trials enrolling adults with different solid tumors, while very few enroll pediatric patients. We determined the types and frequency of FGFR alterations (FGFR1-4) in pediatric cancers to inform future clinical trial design. METHODS: Tumors with FGFR alterations were identified from two large cohorts of pediatric solid tumors subjected to targeted DNA sequencing: The Dana-Farber/Boston Children's Profile Study (n = 888) and the multi-institution GAIN/iCAT2 (Genomic Assessment Improves Novel Therapy) Study (n = 571). Data from the combined patient population of 1,395 cases (64 patients were enrolled in both studies) were reviewed and cases in which an FGFR alteration was identified by OncoPanel sequencing were further assessed. RESULTS: We identified 41 patients with tumors harboring an oncogenic FGFR alteration. Median age at diagnosis was 8 years (range, 6 months-26 years). Diagnoses included 11 rhabdomyosarcomas, nine low-grade gliomas, and 17 other tumor types. Alterations included gain-of-function sequence variants (n = 19), amplifications (n = 10), oncogenic fusions (FGFR3::TACC3 [n = 3], FGFR1::TACC1 [n = 1], FGFR1::EBF2 [n = 1], FGFR1::CLIP2 [n = 1], and FGFR2::CTNNA3 [n = 1]), pathogenic-leaning variants of uncertain significance (n = 4), and amplification in combination with a pathogenic-leaning variant of uncertain significance (n = 1). Two novel FGFR1 fusions in two different patients were identified in this cohort, one of whom showed a response to an FGFR inhibitor. CONCLUSION: In summary, activating FGFR alterations were found in approximately 3% (41/1,395) of pediatric solid tumors, identifying a population of children with cancer who may be eligible and good candidates for trials evaluating FGFR-targeted therapy. Importantly, the genomic and clinical data from this study can help inform drug development in accordance with the Research to Accelerate Cures and Equity for Children Act.
Asunto(s)
Neoplasias Encefálicas , Glioma , Niño , Humanos , Secuencia de Bases , Neoplasias Encefálicas/genética , Carcinogénesis , Proteínas Asociadas a Microtúbulos , Oncogenes , Inhibidores de Proteínas QuinasasRESUMEN
To evaluate the clinical impact of molecular tumor profiling (MTP) with targeted sequencing panel tests, pediatric patients with extracranial solid tumors were enrolled in a prospective observational cohort study at 12 institutions. In the 345-patient analytical population, median age at diagnosis was 12 years (range 0-27.5); 298 patients (86%) had 1 or more alterations with potential for impact on care. Genomic alterations with diagnostic, prognostic or therapeutic significance were present in 61, 16 and 65% of patients, respectively. After return of the results, impact on care included 17 patients with a clarified diagnostic classification and 240 patients with an MTP result that could be used to select molecularly targeted therapy matched to identified alterations (MTT). Of the 29 patients who received MTT, 24% had an objective response or experienced durable clinical benefit; all but 1 of these patients received targeted therapy matched to a gene fusion. Of the diagnostic variants identified in 209 patients, 77% were gene fusions. MTP with targeted panel tests that includes fusion detection has a substantial clinical impact for young patients with solid tumors.
Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias , Adolescente , Adulto , Biomarcadores de Tumor/genética , Niño , Preescolar , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Lactante , Recién Nacido , Terapia Molecular Dirigida/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Estudios Prospectivos , Adulto JovenRESUMEN
PURPOSE: Several aggressive pediatric cancers harbor alterations in SMARCB1, including rhabdoid tumors, epithelioid sarcoma, and chordoma. As tumor profiling has become more routine in clinical care, we investigated the relationship between SMARCB1 genetic variants identified by next-generation sequencing (NGS) and INI1 protein expression. Therapeutic approaches for INI1-deficient tumors are limited. Early reports suggest a potential role for immune checkpoint inhibition in these patients. Thus, we also investigated PD-L1 and CD8 expression in INI1-negative pediatric brain and solid tumors. EXPERIMENTAL DESIGN: We performed immunohistochemistry (IHC) for INI1 and immune markers (PD-L1, CD8, and CD163) and NGS on tumor samples from 43 pediatric patients who had tumors with INI1 loss on previous IHC or SMARCB1 genomic alterations on prior somatic sequencing. RESULTS: SMARCB1 two-copy deletions and inactivating mutations on NGS were associated with loss of INI1 protein expression. Single-copy deletion of SMARCB1 was not predictive of INI1 loss in tumor histologies not known to be INI1-deficient. In the 27 cases with INI1 loss and successful tumor sequencing, 24 (89%) had a SMARCB1 alteration detected. In addition, 47% (14/30) of the patients with INI1-negative tumors had a tumor specimen that was PD-L1 positive and 60% (18/30) had positive or rare CD8 staining. We report on 3 patients with INI1-negative tumors with evidence of disease control on immune checkpoint inhibitors. CONCLUSIONS: A significant proportion of the INI1-negative tumors express PD-L1, and PD-L1 positivity was associated with extracranial tumor site. These results suggest that clinical trials of immune checkpoint inhibitors are warranted in INI1-negative pediatric cancers.
Asunto(s)
Antígeno B7-H1/metabolismo , Biomarcadores de Tumor/genética , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Mutación , Neoplasias/patología , Proteína SMARCB1/deficiencia , Adolescente , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/genética , Niño , Preescolar , Femenino , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Masculino , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/inmunología , Pronóstico , Proteína SMARCB1/genéticaRESUMEN
BACKGROUND: The universal presence of a gene (SMN2) nearly identical to the mutated SMN1 gene responsible for Spinal Muscular Atrophy (SMA) has proved an enticing incentive to therapeutics development. Early disappointments from putative SMN-enhancing agent clinical trials have increased interest in improving the assessment of SMN expression in blood as an early "biomarker" of treatment effect. METHODS: A cross-sectional, single visit, multi-center design assessed SMN transcript and protein in 108 SMA and 22 age and gender-matched healthy control subjects, while motor function was assessed by the Modified Hammersmith Functional Motor Scale (MHFMS). Enrollment selectively targeted a broad range of SMA subjects that would permit maximum power to distinguish the relative influence of SMN2 copy number, SMA type, present motor function, and age. RESULTS: SMN2 copy number and levels of full-length SMN2 transcripts correlated with SMA type, and like SMN protein levels, were lower in SMA subjects compared to controls. No measure of SMN expression correlated strongly with MHFMS. A key finding is that SMN2 copy number, levels of transcript and protein showed no correlation with each other. CONCLUSION: This is a prospective study that uses the most advanced techniques of SMN transcript and protein measurement in a large selectively-recruited cohort of individuals with SMA. There is a relationship between measures of SMN expression in blood and SMA type, but not a strong correlation to motor function as measured by the MHFMS. Low SMN transcript and protein levels in the SMA subjects relative to controls suggest that these measures of SMN in accessible tissues may be amenable to an "early look" for target engagement in clinical trials of putative SMN-enhancing agents. Full length SMN transcript abundance may provide insight into the molecular mechanism of phenotypic variation as a function of SMN2 copy number. TRIAL REGISTRY: Clinicaltrials.gov NCT00756821.
Asunto(s)
Biomarcadores/metabolismo , Variaciones en el Número de Copia de ADN/fisiología , Atrofia Muscular Espinal/metabolismo , Factores de Edad , Análisis de Varianza , Estudios de Casos y Controles , Estudios Transversales , Variaciones en el Número de Copia de ADN/genética , Cartilla de ADN/genética , Femenino , Humanos , Masculino , Actividad Motora/fisiología , Atrofia Muscular Espinal/genética , Estudios Prospectivos , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismoRESUMEN
BACKGROUND: Spinal Muscular Atrophy (SMA) is a neurodegenerative motor neuron disorder resulting from a homozygous mutation of the survival of motor neuron 1 (SMN1) gene. The gene product, SMN protein, functions in RNA biosynthesis in all tissues. In humans, a nearly identical gene, SMN2, rescues an otherwise lethal phenotype by producing a small amount of full-length SMN protein. SMN2 copy number inversely correlates with disease severity. Identifying other novel biomarkers could inform clinical trial design and identify novel therapeutic targets. OBJECTIVE: To identify novel candidate biomarkers associated with disease severity in SMA using unbiased proteomic, metabolomic and transcriptomic approaches. MATERIALS AND METHODS: A cross-sectional single evaluation was performed in 108 children with genetically confirmed SMA, aged 2-12 years, manifesting a broad range of disease severity and selected to distinguish factors associated with SMA type and present functional ability independent of age. Blood and urine specimens from these and 22 age-matched healthy controls were interrogated using proteomic, metabolomic and transcriptomic discovery platforms. Analyte associations were evaluated against a primary measure of disease severity, the Modified Hammersmith Functional Motor Scale (MHFMS) and to a number of secondary clinical measures. RESULTS: A total of 200 candidate biomarkers correlate with MHFMS scores: 97 plasma proteins, 59 plasma metabolites (9 amino acids, 10 free fatty acids, 12 lipids and 28 GC/MS metabolites) and 44 urine metabolites. No transcripts correlated with MHFMS. DISCUSSION: In this cross-sectional study, "BforSMA" (Biomarkers for SMA), candidate protein and metabolite markers were identified. No transcript biomarker candidates were identified. Additional mining of this rich dataset may yield important insights into relevant SMA-related pathophysiology and biological network associations. Additional prospective studies are needed to confirm these findings, demonstrate sensitivity to change with disease progression, and assess potential impact on clinical trial design. TRIAL REGISTRY: Clinicaltrials.gov NCT00756821.