Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Mol Pharm ; 17(5): 1734-1747, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32267708

RESUMEN

Injectable sustained release dosage forms have emerged as desirable therapeutic routes for patients that require life-long treatments. The prevalence of drug molecules with low aqueous solubility and bioavailability has added momentum toward the development of suspension-based long-acting parenteral (LAP) formulations; the previously undesirable physicochemical properties of Biopharmaceutics Classification System (BCS) Class II/IV compounds are best suited for extended release applications. Effective in vitro release (IVR) testing of crystalline suspensions affirms product quality during early-stage development and provides connections with in vivo performance. However, before in vitro-in vivo correlations (IVIVCs) can be established, it is necessary to evaluate formulation attributes that directly affect IVR properties. In this work, a series of crystalline LAP nanosuspensions were formulated with different stabilizing polymers and applied to a continuous flow-through (USP-4) dissolution method. This technique confirmed the role of salt effects on the stability of polymer-coated nanoparticles through the detection of disparate active pharmaceutical ingredient (API) release profiles. The polymer stabilizers with extended hydrophilic chains exhibited elevated intrapolymer activity from the loss of hydrogen-bond cushioning in dissolution media with heightened ionic strength, confirmed through one-dimensional (1D) 1H NMR and two-dimensional nuclear Overhauser effect spectroscopy (2D NOESY) experiments. Thus, steric repulsion within the affected nanosuspensions was limited and release rates decreased. Additionally, the strength of interaction between hydrophobic polymer components and the API crystalline surface contributed to suspension dissolution properties, confirmed through solution- and solid-state spectroscopic analyses. This study provides a unique perspective on the dynamic interface between the crystalline drug and aqueous microenvironment during dissolution.


Asunto(s)
Liberación de Fármacos , Solubilidad , Suspensiones , Preparaciones de Acción Retardada , Difusión , Composición de Medicamentos , Estabilidad de Medicamentos , Nanopartículas , Tamaño de la Partícula , Polímeros/química , Análisis Espectral
2.
Mol Pharm ; 17(2): 530-540, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31895571

RESUMEN

Novel treatment routes are emerging for an array of diseases and afflictions. Complex dosage forms, based on active pharmaceutical ingredients (APIs) with previously undesirable physicochemical characteristics, are becoming mainstream and actively pursued in various pipeline initiatives. To fundamentally understand how constituents in these dosage forms interact on a molecular level, analytical methods need to be developed that encompass selectivity and sensitivity requirements previously reserved for a myriad of in vitro techniques. The knowledge of precise chemical interactions between drugs and excipients in a dosage form can streamline formulation development and process screening capabilities through the identification of properties that influence rates and mechanisms of drug release in a cost-effective manner, relative to long-term in vivo studies. Through this work, a noncompendial in vitro release (IVR) method was developed that distinguished the presence of individual components in a complex crystalline nanosuspension environment. Doravirine was formulated as a series of long-acting injectable nanosuspensions with assorted excipients, using low- and high-energy wet media milling methods. IVR behavior of all formulation components were monitored using a robust continuous flow-through (CFT) dissolution setup (USP-4 apparatus) with on-line 1H NMR end-analysis (flow-NMR). Results from this investigation led to a better understanding of formulation parameter influences on nanosuspension stability, surface chemistry, and dissolution behavior. Flow-NMR can be applied to a broad range of dosage forms in which specific molecular interactions from the solution microenvironment require further insight to enhance product development capabilities.


Asunto(s)
Composición de Medicamentos/métodos , Liberación de Fármacos , Inyecciones , Espectroscopía de Resonancia Magnética/métodos , Nanopartículas/administración & dosificación , Suspensiones/administración & dosificación , Suspensiones/farmacocinética , Química Farmacéutica/instrumentación , Estabilidad de Medicamentos , Excipientes/química , Técnicas In Vitro/métodos , Nanopartículas/química , Tamaño de la Partícula , Piridonas/química , Solubilidad , Triazoles/química
3.
Pharm Res ; 37(6): 107, 2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32462273

RESUMEN

PURPOSE: Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) coupled with gas-phase ion mobility spectrometry was used to characterize the drug distribution in polymeric implants before and after exposure to accelerated in vitro release (IVR) media. DESI-MSI provides definitive chemical identification and localization of formulation components, including 2D chemical mapping of individual components with essentially no sample preparation. METHODS: Polymeric implants containing 40% (w/w) entecavir and poly(D,L-lactide) (PLA) were prepared and then exposed to either acidified PBS (pH 2.5) or MeOH:H2O (50:50, v/v) medias during a 7-day IVR test using continuous flow-through (CFT) cell dissolution. The amount of drug released from the polymer matrix during the 7-day IVR test was monitored by online-ultraviolet spectroscopy (UV) and HPLC-UV. After that period, intact implants and radial sections of implants were analyzed by DESI-MSI with ion mobility spectrometry. The active ingredient along with impurities and contaminants were used to generate chemical maps before and after exposure to the release medias. RESULTS: Bi-phasic release profiles were observed for implants during IVR release using both medias. During the second phase of release, implants exposed to PBS, pH 2.5, released the entecavir faster than the implants exposed to MeOH:H2O (50:50, v/v). Radial images of the polymer interior show that entecavir is localized along the central core of the implant after exposure to MeOH:H2O (50:50, v/v) and that the drug is more uniformly distributed throughout the implant after exposure to acidified PBS (pH 2.5). CONCLUSIONS: DESI-MSI coupled with ion mobility analysis produced chemical images of the drug distribution on the exterior and interior of cylindrical polymeric implants before and after exposure to various release medias. These results demonstrated the utility of this technique for rapid characterization of drug and impurity/degradant distribution within polymeric implants with direct implications for formulation development as well as analytical method development activities for various solid parenteral and oral dosage forms. These results are especially meaningful since samples were analyzed with essentially no preparative procedures.


Asunto(s)
Química Farmacéutica/métodos , Implantes de Medicamentos/química , Liberación de Fármacos , Polímeros/química , Espectrometría de Masa por Ionización de Electrospray , Implantes de Medicamentos/farmacocinética
4.
AAPS PharmSciTech ; 19(1): 413-424, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28755052

RESUMEN

Long-acting or extended release parenteral dosage forms have attracted extensive attention due to their ability to maintain therapeutic drug concentrations over long periods of time and reduce administration frequency, thus improving patient compliance. It is essential to have an in vitro release (IVR) testing method that can be used to assure product quality during routine production as well as predict and understand the in vivo performance of a formulation. The purpose of this work was to develop a discriminatory in vitro release method to guide formulation and process development of long-acting parenteral (LAP) nanosuspension formulations composed of poorly water-soluble drugs (BCS class II). Injectable nanosuspension formulations were developed to serve as test articles for method development. Several different IVR methods were evaluated for their application to the formulation screening and process development including (1) USP apparatus 2, (2) dialysis and reverse dialysis sac, and (3) continuous flow-through cell (USP apparatus 4). Preliminary data shows the promising results to support the utilization of USP 4 over more widely accepted USP 2 and dialysis methods. A combination of more representative in vivo hydrodynamics and ease of maintaining sink conditions yields the USP 4 flow-through cell method a more suitable in vitro release method for nanosuspension-based LAP formulations of poorly water-soluble compounds, such as compounds A and B.


Asunto(s)
Química Farmacéutica/instrumentación , Nanoestructuras/química , Suspensiones/química , Diálisis , Infusiones Parenterales , Tamaño de la Partícula , Reología , Solubilidad , Agua
5.
Inorg Chem ; 54(15): 7645-52, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-26204103

RESUMEN

Reported in this Article are the preparation and characterization of a series of new Ru2(II,III) compounds bearing one cross-conjugated σ-geminal-diethynylethene ligand (gem-DEE), namely, Ru2(Xap)4(Y-gem-DEE) (Xap = N,N'-anilinopyridinate (ap) or 2-(3,5-dimethoxy)anilinopyridinate (DiMeOap), and Y = Si(i)Pr3 (1) or H (2)) and [Ru2(ap)4]2(µ-gem-DEE) (3). Compounds 1-3 were characterized by spectroscopic and voltammetric techniques as well as the single crystal X-ray diffraction study of 2a. The X-ray structural data of 2a and the spectroscopic/voltammetric data of compounds 1 and 2 indicate that the gem-DEE ligands are similar to simple alkynyls in their effects on the molecular and electronic structures of the Ru2(Xap)4 moiety. Similar to the previously studied [Ru2(ap)4]2(µ-C2n) type compounds, dimer 3 exhibits pairwise 1e(-) oxidations and reductions, albeit the potential splits within the pair (ΔE1/2) are significantly smaller than those of [Ru2(ap)4]2(µ-C4). The electronic absorption spectra of the reduced and oxidized derivatives of 1a and 3 were determined using spectroelectrochemistry methods. No discernible intervalence charge transfer transition (IVCT) was detected in the near-IR spectrum for either 3(-) or 3(+), suggesting that the Ru2-Ru2 coupling in these mixed-valence states is weak. DFT calculations on a model compound of 3 yielded six singly occupied molecular orbitals (SOMOs), which have Ru2 contributions similar to those previously calculated for the [Ru2(ap)4]2(µ-C2n) type compounds. Among six SOMOs, SOMO-2 is the only one containing substantial dπ-π(gem-DEE) character across the entire Ru2-µ-gem-DEE-Ru2 linkage, which explains the weakened Ru2-Ru2 coupling.

6.
J Am Chem Soc ; 136(31): 10910-3, 2014 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-25036528

RESUMEN

We report here the polymerization of several 7-isopropylidene-2,3-disubstituted norbornadienes, 7-oxa-2,3-dicarboalkoxynorbornadienes, and 11-oxa-benzonorbornadienes with a single tungsten oxo alkylidene catalyst, W(O)(CH-t-Bu)(OHMT)(Me2Pyr) (OHMT = 2,6-dimesitylphenoxide; Me2Pyr = 2,5-dimethylpyrrolide) to give cis, stereoregular polymers. The tacticities of the menthyl ester derivatives of two polymers were determined for two types. For poly(7-isopropylidene-2,3-dicarbomenthoxynorbornadiene) the structure was shown to be cis,isotactic, while for poly(7-oxa-2,3-dicarbomenthoxynorbornadiene) the structure was shown to be cis,syndiotactic. A bis-trifluoromethyl-7-isopropylidene norbornadiene was not polymerized stereoregularly with W(O)(CHCMe2Ph)(Me2Pyr)(OHMT) alone, but a cis, stereoregular polymer was formed in the presence of 1 equiv of B(C6F5)3.

7.
Angew Chem Int Ed Engl ; 53(51): 14221-4, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25320050

RESUMEN

The reaction of [W(=O)(=CHCMe2Ph)(dAdPO)2], containing bulky 2,6-diadamantyl aryloxide ligands, with partially dehydroxylated silica selectively yields a well-defined silica-supported alkylidene complex, [(≡SiO)W(=O)(=CHCMe2Ph)(dAdPO)]. This fully characterized material is a very active and stable alkene metathesis catalyst, thus allowing loadings as low as 50 ppm in the metathesis of internal alkenes. [(≡SiO)W(=O)(=CHCMe2Ph)(dAdPO)] also efficiently catalyzes the homocoupling of terminal alkenes, with turnover numbers exceeding 75,000 when ethylene is constantly removed to avoid the formation of the less reactive square-based pyramidal metallacycle resting state.

8.
J Am Chem Soc ; 135(41): 15338-41, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-24074292

RESUMEN

A substituted TREN has been prepared in which the aryl groups in (ArylNHCH2CH2)3N are substituted at the 3- and 5-positions with a total of six OCH2(CH2)nCH═CH2 groups (n = 1, 2, 3). Molybdenum nitride complexes, [(ArylNCH2CH2)3N]Mo(N), have been isolated as adducts that contain B(C6F5)3 bound to the nitride. Two of these [(ArylNCH2CH2)3N]Mo(NB(C6F5)3) complexes (n = 1 and 3) were crystallographically characterized. After removal of the borane from [(ArylNCH2CH2)3N]Mo(NB(C6F5)3) with PMe3, ring-closing olefin metathesis (RCM) was employed to join the aryl rings with OCH2(CH2)nCH═CH(CH2)nCH2O links (n = 1-3) between them. RCM worked best with a W(O)(CHCMe3)(Me2Pyr)(OHMT)(PMe2Ph) catalyst (OHMT = hexamethylterphenoxide, Me2Pyr = 2,5-dimethylpyrrolide) and n = 3. The macrocyclic ligand was removed from the metal through hydrolysis and isolated in 70-75% yields relative to the borane adducts. Crystallographic characterization showed that the macrocyclic TREN ligand in which n = 3 contains three cis double bonds. Hydrogenation produced a TREN in which the three links are saturated, i.e., O(CH2)10O.

9.
J Am Chem Soc ; 135(51): 19068-70, 2013 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-24304004

RESUMEN

Grafting (ArO)2W(═O)(═CHtBu) (ArO = 2,6-mesitylphenoxide) on partially dehydroxylated silica forms mostly [(≡SiO)W(═O)(═CHtBu)(OAr)] along with minor amounts of [(≡SiO)W(═O)(CH2tBu)(OAr)2] (20%), both fully characterized by elemental analysis and IR and NMR spectroscopies. The well-defined oxo alkylidene surface complex [(≡SiO)W(═O)(═CHtBu)OAr] is among the most active heterogeneous metathesis catalysts reported to date in the self-metathesis of cis-4-nonene and ethyl oleate, in sharp contrast to the classical heterogeneous catalysts based on WO3/SiO2.

10.
Inorg Chem ; 51(5): 3261-9, 2012 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-22324911

RESUMEN

Reported in this contribution are the preparation and characterization of a series of Ru(2)(DMBA)(4) (DMBA = N,N'-dimethylbenzamidinate) bis(alkynyl) compounds, trans-Ru(2)(DMBA)(4)(X-gem-DEE)(2) [gem-DEE = σ-geminal-diethynylethene; X = H (1), Si(i)Pr(3) (2), Fc (3); 4-C(6)H(4)NO(2) (4), and 4-C(6)H(4)NMe(2) (5)]. Compounds 1-5 were characterized by spectroscopic and voltammetric techniques as well as the single-crystal X-ray diffraction studies of 2 and 3. Both the single-crystal structural data of compounds 2 and 3 and the spectroscopic/voltammetric data indicate that the gem-DEE ligands are similar to simple acetylides in their impact on the molecular and electronic structures of the Ru(2)(DMBA)(4) core. Furthermore, density functional theory calculations revealed more extensive π delocalization in aryl-donor-substituted gem-DEEs and that the hole-transfer mechanism will likely dominate the charge delocalization in Ru(2)-gem-DEE-based wires.

11.
Inorg Chem ; 51(4): 2058-64, 2012 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-22289187

RESUMEN

The electronic structures of two uranium compounds supported by redox-active α-diimine ligands, ((Mes)DAB(Me))(2)U(THF) (1) and Cp(2)U((Mes)DAB(Me)) (2) ((Mes)DAB(Me) = [ArN═C(Me)C(Me)═NAr]; Ar = 2,4,6-trimethylphenyl (Mes)), have been investigated using both density functional theory and multiconfigurational self-consistent field methods. Results from these studies have established that both uranium centers are tetravalent, that the ligands are reduced by two electrons, and that the ground states of these molecules are triplets. Energetically low-lying singlet states are accessible, and some transitions to these states are visible in the electronic absorption spectrum.

12.
J Am Chem Soc ; 133(13): 4948-54, 2011 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-21384870

RESUMEN

A rare uranium(III) alkyl complex, Tp*(2)U(CH(2)Ph) (2) (Tp* = hydrotris(3,5-dimethylpyrazolyl)borate), was synthesized by salt metathesis from Tp*(2)UI (1) and KCH(2)Ph and fully characterized using (1)H NMR, infrared, and electronic absorption spectroscopies as well as X-ray crystallography. This complex has a uranium-carbon distance of 2.57(2) Å, which is comparable to other uranium alkyls reported. Treating this compound with either carbon dioxide or carbon disulfide results in insertion into the uranium-carbon bond to generate Tp*(2)U(κ(2)-O(2)CCH(2)Ph) (3) and Tp*(2)U(SC(S)CH(2)Ph) (4), respectively. These species, characterized spectroscopically and by X-ray crystallography, feature new carboxylate and dithiocarboxylate ligands. Analysis by electronic absorption spectroscopy supports the trivalent oxidation state of the uranium center in both of these derivatives. Addition of trimethylsilylhalides (Me(3)SiX; X = Cl, I) to 3 results in the release of the free silyl ester, Me(3)SiOC(O)CH(2)Ph, forming the initial uranium monohalide species, Tp*(2)UX, which can then be used over multiple cycles for the functionalization of carbon dioxide.


Asunto(s)
Dióxido de Carbono/química , Disulfuro de Carbono/química , Compuestos Organometálicos/química , Uranio/química , Cristalografía por Rayos X , Modelos Moleculares , Conformación Molecular , Estereoisomerismo
13.
Inorg Chem ; 50(16): 7364-6, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21766790

RESUMEN

New trans-[Fe(cyclam)(C≡CR)(2)]OTf compounds 2a/2b [cyclam = 1,4,8,11-tetraazacyclotetradecane, R = Si(i)Pr(3) (a) or Ph (b), and OTf = trifluoromethanesulfonate] were prepared from the reaction between trans-[Fe(cyclam)(OTf)(2)]OTf (1) and LiC≡CR. The trans arrangement of the acetylide ligands in 2 was established from the X-ray diffraction study of 2a, and the density functional theory calculations revealed significant dπ-π(C≡C) interactions.

14.
Inorg Chem ; 50(19): 9345-53, 2011 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-21902231

RESUMEN

A series of dendronized-Ru(2) compounds were prepared using the Cu(I)-catalyzed 1,3-dipolar cycloaddition (click reaction) between the terminal azides of azidopoly(benzyl ether) dendrons ([D(n)]-N(3), n = 0-3) and Ru(2) units bearing one or two terminal ethynes, Ru(2)(D(3,5-Cl(2)Ph)F)(4-m)(DMBA-4-C(2)H)(m)Cl with m = 1 and 2, and D(3,5-Cl(2)Ph)F and DMBA-4-C(2)H as N,N'-bis(3,5-dichloro-phenyl)formamidinate and N,N'-dimethyl-4-ethynylbenzamidinate, respectively. The resultant Ru(2)(D(3,5-Cl(2)Ph)F)(4-m)(DMBA-D(n))(m)Cl compounds were further functionalized by the axial ligand displacement of Cl by -C(2)Ph to yield new compounds Ru(2)(D(3,5-Cl(2)Ph)F)(4-m)(DMBA-D(n))(m)(C(2)Ph)(2) (where m = 1 and 2; n = 0 and 1). All Ru(2) compounds reported herein were analyzed via mass spectrometry, voltammetry, and UV-visible and fluorescence spectroscopy. Density-functional theory (DFT) calculations were performed on a model compound to gain more insight into the molecular orbital energy levels possibly associated with the photophysical data obtained and presented herein.

15.
Inorg Chem ; 50(19): 9354-64, 2011 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-21888339

RESUMEN

Alkynyl complexes of the type [M(cyclam)(CCR)(2)]OTf (where cyclam = 1,4,8,11-tetraazacyclotetradecane; M = Rh(III) or Cr(III); and R = phenyl, 4-methylphenyl, 4-trifluoromethylphenyl, 4-fluorophenyl, 1-naphthalenyl, 9-phenanthrenyl, and cyclohexyl) were prepared in 49% to 93% yield using a one-pot synthesis involving the addition of 2 equiv of RCCH and 4 equiv of BuLi to the appropriate [M(cyclam)(OTf)(2)]OTf complex in THF. The cis and trans isomers of the alkynyl complexes were separated using solubility differences, and the stereochemistry was characterized using infrared spectroscopy of the CH(2) rocking and NH bending region. All of the trans-[M(cyclam)(CCR)(2)]OTf complexes exhibit strong Raman bands between 2071 and 2109 cm(-1), ascribed to ν(s)(C≡C). The stretching frequencies for the Cr(III) complexes are 21-28 cm(-1) lower than for the analogous Rh(III) complexes, a result that can be interpreted in terms of the alkynyl ligands acting as π-donors. UV-vis spectra of the Cr(III) and Rh(III) complexes are dominated by strong charge transfer (CT) transitions. In the case of the Rh(III) complexes, these CT transitions obscure the metal centered (MC) transitions, but in the case of the Cr(III) complexes the MC transitions are unobscured and appear between 320 and 500 nm, with extinction coefficients (170-700 L mol(-1) cm(-1)) indicative of intensity stealing from the proximal CT bands. The Cr(III) complexes show long-lived (240-327 µs), structureless, MC emission centered between 731 and 748 nm in degassed room temperature aqueous solution. Emission characteristics are also consistent with the arylalkynyl ligands acting as π-donors. The Rh(III) complexes also display long-lived (4-21 µs), structureless, metal centered emission centered between 524 and 548 nm in degassed room temperature solution (CH(3)CN).

16.
Inorg Chem ; 50(20): 9838-48, 2011 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-21761890

RESUMEN

Uranium compounds supported by redox-active α-diimine ligands, which have methyl groups on the ligand backbone and bulky mesityl substituents on the nitrogen atoms {(Mes)DAB(Me) = [ArN═C(Me)C(Me)═NAr], where Ar = 2,4,6-trimethylphenyl (Mes)}, are reported. The addition of 2 equiv of (Mes)DAB(Me), 3 equiv of KC(8), and 1 equiv of UI(3)(THF)(4) produced the bis(ligand) species ((Mes)DAB(Me))(2)U(THF) (1). The metallocene derivative, Cp(2)U((Mes)DAB(Me)) (2), was generated by the addition of an equimolar ratio of (Mes)DAB(Me) and KC(8) to Cp(3)U. The bond lengths in the molecular structure of both species confirm that the α-diimine ligands have been doubly reduced to form ene-diamide ligands. Characterization by electronic absorption spectroscopy shows weak, sharp transitions in the near-IR region of the spectrum and, in combination with the crystallographic data, is consistent with the formulation that tetravalent uranium ions are present and supported by ene-diamide ligands. This interpretation was verified by U L(III)-edge X-ray absorption near-edge structure (XANES) spectroscopy and by variable-temperature magnetic measurements. The magnetic data are consistent with singlet ground states at low temperature and variable-temperature dependencies that would be expected for uranium(IV) species. However, both complexes exhibit low magnetic moments at room temperature, with values of 1.91 and 1.79 µ(B) for 1 and 2, respectively. Iodomethane was used to test the reactivity of 1 and 2 for multielectron transfer. While 2 showed no reactivity with CH(3)I, the addition of 2 equiv of iodomethane to 1 resulted in the formation of a uranium(IV) monoiodide species, ((Mes)DAB(Me))((Mes)DAB(Me2))UI {3; (Mes)DAB(Me2) = [ArN═C(Me)C(Me(2))NAr]}, which was characterized by single-crystal X-ray diffraction and U M(4)- and M(5)-edge XANES. Confirmation of the structure was also attained by deuterium labeling studies, which showed that a methyl group was added to the ene-diamide ligand carbon backbone.


Asunto(s)
Iminas/química , Compuestos Organometálicos/química , Compuestos Organometálicos/síntesis química , Uranio/química , Cristalografía por Rayos X , Transporte de Electrón , Ligandos , Espectroscopía de Resonancia Magnética , Magnetometría , Modelos Moleculares , Conformación Molecular , Espectroscopía de Absorción de Rayos X
17.
J Pharm Sci ; 106(12): 3438-3441, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28870539

RESUMEN

As science evolves, the need for more efficient and innovative knowledge transfer capabilities becomes evident. Advances in drug discovery and delivery sciences have directly impacted the pharmaceutical industry, though the added complexities have not shortened the development process. These added complexities also make it difficult for scientists to rapidly and effectively transfer knowledge to offset the lengthened drug development timelines. While webcams, camera phones, and iPads have been explored as potential new methods of real-time information sharing, the non-"hands-free" nature and lack of viewer and observer point-of-view render them unsuitable for the R&D laboratory or manufacturing setting. As an alternative solution, the Microsoft HoloLens mixed-reality headset was evaluated as a more efficient, hands-free method of knowledge transfer and information sharing. After completing a traditional method transfer between 3 R&D sites (Rahway, NJ; West Point, PA and Schnachen, Switzerland), a retrospective analysis of efficiency gain was performed through the comparison of a mock method transfer between NJ and PA sites using the HoloLens. The results demonstrated a minimum 10-fold gain in efficiency, weighing in from a savings in time, cost, and the ability to have real-time data analysis and discussion. In addition, other use cases were evaluated involving vendor and contract research/manufacturing organizations.


Asunto(s)
Descubrimiento de Drogas/métodos , Industria Farmacéutica/métodos , Humanos , Preparaciones Farmacéuticas/química , Estudios Retrospectivos , Estadística como Asunto/métodos , Tecnología Farmacéutica/métodos
18.
Organometallics ; 33(19): 5334-5341, 2014 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-25328267

RESUMEN

Imido alkylidene complexes of Mo and W and oxo alkylidene complexes of W that contain thiophenoxide ligands of the type S-2,3,5,6-Ph4C6H (STPP) and S-2,6-(mesityl)2C6H3 (SHMT = S-hexamethylterphenyl) have been prepared in order to compare their metathesis activity with that of the analogous phenoxide complexes. All thiolate complexes were significantly slower (up to ∼10× slower) for the metathesis homocoupling of 1-octene or polymerization of 2,3-dicarbomethoxynorbornene, and none of them was Z-selective. The slower rates could be attributed to the greater σ-donating ability of a thiophenoxide versus the analogous phenoxide and consequently a higher electron density at the metal in the thiophenoxide complexes.

19.
J Am Soc Mass Spectrom ; 24(1): 30-7, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23208744

RESUMEN

Gas-phase modification of carboxylic acid functionalities is performed via ion/ion reactions with carbodiimide reagents [N-cyclohexyl-N'-(2-morpholinoethyl)carbodiimide (CMC) and [3-(3-Ethylcarbodiimide-1-yl)propyl]trimethylaminium (ECPT)]. Gas-phase ion/ion covalent chemistry requires the formation of a long-lived complex. In this instance, the complex is stabilized by an electrostatic interaction between the fixed charge quaternary ammonium group of the carbodiimide reagent cation and the analyte dianion. Subsequent activation results in characteristic loss of an isocyanate derivative from one side of the carbodiimide functionality, a signature for this covalent chemistry. The resulting amide bond is formed on the analyte at the site of the original carboxylic acid. Reactions involving analytes that do not contain available carboxylic acid groups (e.g., they have been converted to sodium salts) or reagents that do not have the carbodiimide functionality do not undergo a covalent reaction. This chemistry is demonstrated using PAMAM generation 0.5 dendrimer, ethylenediaminetetraacetic acid (EDTA), and the model peptide DGAILDGAILD. This work demonstrates the selective gas-phase covalent modification of carboxylic acid functionalities.


Asunto(s)
Carbodiimidas/química , Ácidos Carboxílicos/química , Dendrímeros , Ácido Edético/química , Gases/química , Iones/química , Espectrometría de Masas , Oligopéptidos/química
20.
Chem Commun (Camb) ; 48(11): 1671-3, 2012 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-22187024

RESUMEN

Trivalent Cp*(2)U(2,2'-bpy) (2) (Cp* = C(5)Me(5), 2,2'-bpy = 2,2'-bipyridine), which has a monoanionic bipyridine, was treated with p-tolualdehyde (a), furfuraldehyde (b), acetone (c), and benzophenone (d). Reduction of the C[double bond, length as m-dash]O bond followed by radical coupling with bipyridine forms the U(iv) derivatives [Cp*(2)U(2,2'-bpy)(OCRR')] (3a-d).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA