Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Pathog ; 16(8): e1008779, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32853289

RESUMEN

The pandemic spread of African swine fever virus (ASFV) genotype II (GTII) has led to a global crisis. Since the circulating strains are almost identical, time and money have been mis-invested in whole-genome sequencing the last years. New methods, harmonised protocols for sample selection, sequencing, and bioinformatics are therefore urgently needed.


Asunto(s)
Virus de la Fiebre Porcina Africana/clasificación , Virus de la Fiebre Porcina Africana/genética , Fiebre Porcina Africana/diagnóstico , Genes Virales/genética , Variación Genética , Genoma Viral , Secuenciación Completa del Genoma/métodos , Fiebre Porcina Africana/virología , Virus de la Fiebre Porcina Africana/aislamiento & purificación , Animales , Biología Computacional/métodos , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Filogenia , Control de Calidad , Porcinos
2.
BMC Biol ; 18(1): 136, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-33032594

RESUMEN

BACKGROUND: African swine fever virus (ASFV) is a most devastating pathogen affecting swine. In 2007, ASFV was introduced into Eastern Europe where it continuously circulates and recently reached Western Europe and Asia, leading to a socio-economic crisis of global proportion. In Africa, where ASFV was first described in 1921, it is transmitted between warthogs and soft ticks of the genus Ornithodoros in a so-called sylvatic cycle. However, analyses into this virus' evolution are aggravated by the absence of any closely related viruses. Even ancient endogenous viral elements, viral sequences integrated into a host's genome many thousand years ago that have proven extremely valuable to analyse virus evolution, remain to be identified. Therefore, the evolution of ASFV, the only known DNA virus transmitted by arthropods, remains a mystery. RESULTS: For the identification of ASFV-like sequences, we sequenced DNA from different recent Ornithodoros tick species, e.g. O. moubata and O. porcinus, O. moubata tick cells and also 100-year-old O. moubata and O. porcinus ticks using high-throughput sequencing. We used BLAST analyses for the identification of ASFV-like sequences and further analysed the data through phylogenetic reconstruction and molecular clock analyses. In addition, we performed tick infection experiments as well as additional small RNA sequencing of O. moubata and O. porcinus soft ticks. CONCLUSION: Here, we show that soft ticks of the Ornithodoros moubata group, the natural arthropod vector of ASFV, harbour African swine fever virus-like integrated (ASFLI) elements corresponding to up to 10% (over 20 kb) of the ASFV genome. Through orthologous dating and molecular clock analyses, we provide data suggesting that integration could have occurred over 1.47 million years ago. Furthermore, we provide data showing ASFLI-element specific siRNA and piRNA in ticks and tick cells allowing for speculations on a possible role of ASFLI-elements in RNA interference-based protection against ASFV in ticks. We suggest that these elements, shaped through many years of co-evolution, could be part of an evolutionary virus-vector 'arms race', a finding that has not only high impact on our understanding of the co-evolution of viruses with their hosts but also provides a glimpse into the evolution of ASFV.


Asunto(s)
Virus de la Fiebre Porcina Africana/genética , Vectores Artrópodos/genética , Evolución Molecular , Genoma , Ornithodoros/genética , Animales , Evolución Biológica , Filogenia , Análisis de Secuencia de ADN
3.
Emerg Infect Dis ; 25(6): 1249-1252, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30907724

RESUMEN

We analyzed the whole-genome sequence of African swine fever virus Belgium 2018/1. The strain fits into the European genotype II (>99.98% identity). The high-coverage sequence revealed 15 differences compared with an improved African swine fever virus Georgia 2007/1 sequence. However, in the absence of genetic markers, no spatial or temporal correlations could be defined.


Asunto(s)
Virus de la Fiebre Porcina Africana/clasificación , Virus de la Fiebre Porcina Africana/genética , Fiebre Porcina Africana/epidemiología , Fiebre Porcina Africana/virología , Genoma Viral , Secuenciación Completa del Genoma , Fiebre Porcina Africana/historia , Virus de la Fiebre Porcina Africana/aislamiento & purificación , Animales , Bélgica/epidemiología , Genómica/métodos , Historia del Siglo XXI , Secuencias Invertidas Repetidas , Porcinos
4.
Emerg Microbes Infect ; 12(1): 2146537, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36356059

RESUMEN

African swine fever virus (ASFV), a large and complex DNA-virus circulating between soft ticks and indigenous suids in sub-Saharan Africa, has made its way into swine populations from Europe to Asia. This virus, causing a severe haemorrhagic disease (African swine fever) with very high lethality rates in wild boar and domestic pigs, has demonstrated a remarkably high genetic stability for over 10 years. Consequently, analyses into virus evolution and molecular epidemiology often struggled to provide the genetic basis to trace outbreaks while few resources have been dedicated to genomic surveillance on whole-genome level. During its recent incursion into Germany in 2020, ASFV has unexpectedly diverged into five clearly distinguishable linages with at least ten different variants characterized by high-impact mutations never identified before. Noticeably, all new variants share a frameshift mutation in the 3' end of the DNA polymerase PolX gene O174L, suggesting a causative role as possible mutator gene. Although epidemiological modelling supported the influence of increased mutation rates, it remains unknown how fast virus evolution might progress under these circumstances. Moreover, a tailored Sanger sequencing approach allowed us, for the first time, to trace variants with genomic epidemiology to regional clusters. In conclusion, our findings suggest that this new factor has the potential to dramatically influence the course of the ASFV pandemic with unknown outcome. Therefore, our work highlights the importance of genomic surveillance of ASFV on whole-genome level, the need for high-quality sequences and calls for a closer monitoring of future phenotypic changes of ASFV.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Porcinos , Animales , Virus de la Fiebre Porcina Africana/genética , Fiebre Porcina Africana/epidemiología , Sus scrofa , Europa (Continente)/epidemiología , Alemania
5.
Microbiol Resour Announc ; 9(44)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33122412

RESUMEN

Between June 2017 and April 2018, an outbreak of African swine fever (ASF) affected wild boar in the southeast of the Czech Republic. Here, we present the whole-genome sequence of the causative ASF virus. It belongs to genotype II and shows very high identity with other strains from Eastern Europe.

6.
Viruses ; 11(9)2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31514438

RESUMEN

African swine fever (ASF) is a severe disease of suids caused by African swine fever virus (ASFV). Its dsDNA genome (170-194 kbp) is scattered with homopolymers and repeats as well as inverted-terminal-repeats (ITR), which hamper whole-genome sequencing. To date, only a few genome sequences have been published and only for some are data on sequence quality available enabling in-depth investigations. Especially in Europe and Asia, where ASFV has continuously spread since its introduction into Georgia in 2007, a very low genetic variability of the circulating ASFV-strains was reported. Therefore, only whole-genome sequences can serve as a basis for detailed virus comparisons. Here, we report an effective workflow, combining target enrichment, Illumina and Nanopore sequencing for ASFV whole-genome sequencing. Following this approach, we generated an improved high-quality ASFV Georgia 2007/1 whole-genome sequence leading to the correction of 71 sequencing errors and the addition of 956 and 231 bp at the respective ITRs. This genome, derived from the primary outbreak in 2007, can now serve as a reference for future whole-genome analyses of related ASFV strains and molecular approaches. Using both workflow and the reference genome, we generated the first ASFV-whole-genome sequence from Moldova, expanding the sequence knowledge from Eastern Europe.


Asunto(s)
Virus de la Fiebre Porcina Africana/genética , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Proteínas Virales/genética , Secuenciación Completa del Genoma/métodos , Fiebre Porcina Africana/virología , Animales , ADN Viral/genética , Bases de Datos de Ácidos Nucleicos , Variación Genética , Secuenciación de Nanoporos/métodos , Porcinos/virología , Flujo de Trabajo
7.
Sci Rep ; 8(1): 14714, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30279544

RESUMEN

African swine fever (ASF) is a viral disease that affects members of the Suidae family such as African bush pigs, warthogs, but also domestic pigs, and wild boar. It is transmitted by direct contact of naïve with infected animals, by soft ticks of the Ornithodoros genus, or indirectly by movement of infected animals, improper disposal of contaminated animal products or other sources related to human activity. The recent spread of ASF into Eastern and Central European countries is currently threatening the European pig industry. The situation is aggravated as to-date no efficient vaccine is available. African swine fever virus (ASFV) is a large enveloped ds DNA-virus encoding at least 150 open reading frames. Many of the deduced gene products have not been described, less functionally characterized. We have analysed ASFV protein expression in three susceptible mammalian cell lines representing a susceptible host (wild boar) and two non-susceptible species (human and green monkey) by mass spectrometry and provide first evidence for the expression of 23 so far uncharacterized ASFV ORFs. Expression levels of several newly identified ASFV proteins were remarkably high indicating importance in the viral replication cycle. Moreover, expression profiles of ASFV proteins in the three cell lines differed markedly.


Asunto(s)
Virus de la Fiebre Porcina Africana/metabolismo , Fiebre Porcina Africana/virología , Proteoma/metabolismo , Sus scrofa/virología , Proteínas Virales/metabolismo , Fiebre Porcina Africana/prevención & control , Fiebre Porcina Africana/transmisión , Crianza de Animales Domésticos , Animales , Chlorocebus aethiops , Desarrollo de Medicamentos , Europa (Continente) , Células HEK293 , Humanos , Ornithodoros/virología , Proteómica , Porcinos , Células Vero , Vacunas Virales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA