Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 19(30): e2206644, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36965146

RESUMEN

Hydrogels are widely used as cell scaffolds in several biomedical applications. Once implanted in vivo, cell scaffolds must often be visualized, and monitored overtime. However, cell scaffolds appear poorly contrasted in most biomedical imaging modalities such as magnetic resonance imaging (MRI). MRI is the imaging technique of choice for high-resolution visualization of low-density, water-rich tissues. Attempts to enhance hydrogel contrast in MRI are performed with "negative" contrast agents that produce several image artifacts impeding the delineation of the implant's contours. In this study, a magnetic ink based on ultra-small iron oxide nanoparticles (USPIONs; <5 nm diameter cores) is developed and integrated into biocompatible alginate hydrogel used in cell scaffolding applications. Relaxometric properties of the magnetic hydrogel are measured, as well as biocompatibility and MR-visibility (T1 -weighted mode; in vitro and in vivo). A 2-week MR follow-up study is performed in the mouse model, demonstrating no image artifacts, and the retention of "positive" contrast overtime, which allows very precise delineation of tissue grafts with MRI. Finally, a 3D-contouring procedure developed to facilitate graft delineation and geometrical conformity assessment is applied on an inverted template alginate pore network. This proof-of-concept establishes the possibility to reveal precisely engineered hydrogel structures using this USPIONs ink high-visibility approach.


Asunto(s)
Nanopartículas , Ingeniería de Tejidos , Ratones , Animales , Estudios de Seguimiento , Tinta , Andamios del Tejido/química , Imagen por Resonancia Magnética/métodos , Hidrogeles/química , Medios de Contraste , Alginatos/química
2.
Bioconjug Chem ; 32(4): 729-745, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33689293

RESUMEN

Ultrasmall nanoparticles (US-NPs; <20 nm in hydrodynamic size) are now included in a variety of pharmacological and cosmetic products, and new technologies are needed to detect at high sensitivity the passage of small doses of these products across biological barriers such as the skin. In this work, a diffusion cell adapted to positron emission tomography (PET), a highly sensitive imaging technology, was developed to measure the passage of gold NPs (AuNPs) in skin samples in continuous mode. US-AuNPs (3.2 nm diam.; TEM) were functionalized with deferoxamine (DFO) and radiolabeled with 89Zr(IV) (half-life: 3.3 days, matching the timeline of diffusion tests). The physicochemical properties of the functionalized US-AuNPs (US-AuNPs-PEG-DFO) were characterized by FTIR (DFO grafting; hydroxamate peaks: 1629.0 cm-1, 1569.0 cm-1), XPS (presence of the O═C-N C 1s peak of DFO at 287.49 eV), and TGA (organic mass fraction). The passage of US-AuNPs-PEG-DFO-89Zr(IV) in skin samples was measured by PET, and the diffusion parameters were extracted thereby. The signals of radioactive US-AuNPs-PEG-DFO-89Zr(IV) leaving the donor compartment, passing through the skin, and entering the acceptor compartment were detected in continuous at concentrations as low as 2.2 nM of Au. The high-sensitivity acquisitions performed in continuous allowed for the first time to extract the lag time to the start of permeation, the lag time to start of the steady state, the diffusion coefficients, and the influx data for AuNPs permeating into the skin. PET could represent a highly valuable tool for the development of nanoparticle-containing topical formulations of drugs and cosmetics.


Asunto(s)
Nanopartículas del Metal/química , Tomografía de Emisión de Positrones/métodos , Piel/metabolismo , Oro/química , Permeabilidad , Análisis Espectral/métodos
3.
Langmuir ; 33(40): 10531-10542, 2017 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-28869376

RESUMEN

The development of molecular and cellular magnetic resonance imaging (MRI) procedures has always represented a challenge because of the fact that conventional MRI contrast agents are not directly detected in vivo; in proton MRI (e.g., with the nucleus 1H), their local concentration is measured through the effect they exert on the signal of hydrogen protons present in their immediate vicinity. Because the contrast effects generated by conventional MRI probes superpose to and can often impede the anatomical information contained in 1H MRI images, new probes based on a nucleus other than 1H, are being developed. In this study, we report on the development of fluorinated mesoporous silica nanoparticles (MSNs), which could represent an interesting dual probe that allows two MRI modes: 1H for high-resolution anatomical information and 19F for the detection of MSNs used as drug delivery agents. MSNs were synthesized and covalently functionalized either with fluorosilane (FMSNs) or polyfluorosiloxane (polyFMSNs) to enable their detection in 19F MRI. Then, gadolinium chelates were grafted on the particles to enhance their detectability in 1H MRI. The physicochemical, textural, and relaxometric properties (1H and 19F relaxation times) of the nanoparticles were measured and compared. The 19F relaxation properties were found to be dependent on the concentration of fluorine; they were also highly sensitive to the presence of gadolinium. The shortest relaxation times were obtained with polyFMSNs. At clinical magnetic field strengths, high 1H relaxivities and low relaxometric ratios (r2/r1 = 1.45; 2.2 for nanoparticles entrapped in hydrogel) were found for both nanoparticle systems. Finally, the visibility of both systems was confirmed in 1H, and the detectability of polyFMSNs was confirmed in 19F MRI. This physicochemical and relaxometric study opens the door to the applications of fluorinated silica nanoparticles as theranostic materials allowing dual MRI (1H and 19F).


Asunto(s)
Nanopartículas , Medios de Contraste , Gadolinio , Imagen por Resonancia Magnética , Dióxido de Silicio
4.
Sensors (Basel) ; 16(6)2016 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-27240377

RESUMEN

In this paper, we present a new modular lab on a chip design for multimodal neurotransmitter (NT) sensing and niosome generation based on a plug-and-play concept. This architecture is a first step toward an automated platform for an automated modulation of neurotransmitter concentration to understand and/or treat neurodegenerative diseases. A modular approach has been adopted in order to handle measurement or drug delivery or both measurement and drug delivery simultaneously. The system is composed of three fully independent modules: three-channel peristaltic micropumping system, a three-channel potentiostat and a multi-unit microfluidic system composed of pseudo-Y and cross-shape channels containing a miniature electrode array. The system was wirelessly controlled by a computer interface. The system is compact, with all the microfluidic and sensing components packaged in a 5 cm × 4 cm × 4 cm box. Applied to serotonin, a linear calibration curve down to 0.125 mM, with a limit of detection of 31 µ M was collected at unfunctionalized electrodes. Added sensitivity and selectivity was achieved by incorporating functionalized electrodes for dopamine sensing. Electrode functionalization was achieved with gold nanoparticles and using DNA and o-phenylene diamine polymer. The as-configured platform is demonstrated as a central component toward an "intelligent" drug delivery system based on a feedback loop to monitor drug delivery.


Asunto(s)
Técnicas Biosensibles/métodos , Microfluídica/métodos , Técnicas Electroquímicas/métodos , Electrodos , Oro/química , Nanopartículas del Metal/química , Tecnología Inalámbrica
5.
Langmuir ; 31(47): 13011-21, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26517311

RESUMEN

Thin films made of mesoporous silica nanoparticles (MSNs) are finding new applications in catalysis, optics, as well as in biomedicine. The fabrication of MSNs thin films requires a precise control over the deposition and sintering of MSNs on flat substrates. In this study, MSNs of narrow size distribution (150 nm) are synthesized, and then assembled onto flat silicon substrates, by means of a dip-coating process. Using concentrated MSN colloidal solutions (19.5 mg mL(-1) SiO2), withdrawal speed of 0.01 mm s(-1), and well-controlled atmospheric conditions (ambient temperature, ∼ 70% of relative humidity), monolayers are assembled under well-structured compact patterns. The thin films are sintered up to 900 °C, and the evolution of the MSNs size distributions are compared to those of their pore volumes and densities. Particle size distributions of the sintered thin films were precisely fitted using a model specifically developed for asymmetric particle size distributions. With increasing temperature, there is first evidence of intraparticle reorganization/relaxation followed by intraparticle sintering followed by interparticle sintering. This study is the first to quantify the impact of sintering on MSNs assembled as thin films.


Asunto(s)
Nanopartículas/química , Dióxido de Silicio/química , Tamaño de la Partícula , Porosidad
6.
Biomacromolecules ; 15(6): 2146-56, 2014 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-24785001

RESUMEN

Ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) with diameters <5 nm hold great promise as T1-positive contrast agents for in vivo magnetic resonance imaging. However, control of the surface chemistry of USPIOs to ensure individual colloidal USPIOs with a ligand monolayer and to impart biocompatibility and enhanced colloidal stability is essential for successful clinical applications. Herein, an effective and versatile strategy enabling the development of aqueous colloidal USPIOs stabilized with well-defined multidentate block copolymers (MDBCs) is reported. The multifunctional MDBCs are designed to consist of an anchoring block possessing pendant carboxylates as multidentate anchoring groups strongly bound to USPIO surfaces and a hydrophilic block having pendant hydrophilic oligo(ethylene oxide) chains to confer water dispersibility and biocompatibility. The surface of USPIOs is saturated with multiple anchoring groups of MDBCs, thus exhibiting excellent long-term colloidal stability as well as enhanced colloidal stability at biologically relevant electrolyte, pH, and temperature conditions. Furthermore, relaxometric properties as well as in vitro and in vivo MR imaging results demonstrate that the MDBC-stabilized USPIO colloids hold great potential as an effective T1 contrast agent.


Asunto(s)
Coloides/química , Compuestos Férricos/química , Óxido Ferrosoférrico/química , Imagen por Resonancia Magnética/métodos , Nanopartículas del Metal/química , Abdomen/irrigación sanguínea , Abdomen/fisiología , Animales , Coloides/metabolismo , Estabilidad de Medicamentos , Femenino , Compuestos Férricos/metabolismo , Óxido Ferrosoférrico/metabolismo , Ratones , Ratones Endogámicos BALB C
7.
Adv Healthc Mater ; 12(23): e2300305, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37094373

RESUMEN

Brachytherapy (BT) is a widely used clinical procedure for localized cervical cancer treatment. In addition, gold nanoparticles (AuNPs) have been demonstrated as powerful radiosensitizers in BT procedures. Prior to irradiation by a BT device, their delivery to tumors can enhance the radiation effect by generating low-energy photons and electrons, leading to reactive oxygen species (ROS) production, lethal to cells. No efficient delivery system has been proposed until now for AuNP topical delivery to localized cervical cancer in the context of BT. This article reports an original approach developed to accelerate the preclinical studies of AuNP-enhanced BT procedures. First, an AuNP-containing hydrogel (Pluronic F127, alginate) is developed and tested in mice for degradation, AuNP release, and biocompatibility. Then, custom-made 3D-printed radioactive BT inserts covered with a AuNP-containing hydrogel cushion are designed and administered by surgery in mice (HeLa xenografts), which allows for measuring AuNP penetration in tumors (≈100 µm), co-registered with the presence of ROS produced through the interactions of radiation and AuNPs. Biocompatible AuNPs-releasing hydrogels could be used in the treatment of cervical cancer prior to BT, with impact on  the total amount of radiation needed per BT treatment, which will result in benefits to the preservation of healthy tissues surrounding cancer.


Asunto(s)
Braquiterapia , Nanopartículas del Metal , Neoplasias del Cuello Uterino , Femenino , Ratones , Humanos , Animales , Braquiterapia/métodos , Oro/farmacología , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/radioterapia , Hidrogeles/farmacología , Especies Reactivas de Oxígeno , Nanopartículas del Metal/uso terapéutico , Impresión Tridimensional
8.
Adv Healthc Mater ; 12(25): e2300528, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37536742

RESUMEN

In brachytherapy (BT), or internal radiation therapy, cancer is treated by radioactive implants. For instance, episcleral plaques (EPs) for the treatment of uveal melanoma, are designed according to generic population approximations. However, more personalized implants can enhance treatment precision through better adjustment of dose profiles to the contours of cancerous tissues. An original approach integrating biomedical imaging, 3D printing, radioactivity painting, and biomedical imaging, is developed as a workflow for the development of tumor shape-specific BT implants. First, computer-aided design plans of EP are prepared according to guidelines prescribed by the Collaborative Ocular Melanoma Study protocol. Polyetheretherketone (PEEK), a high-performance polymer suitable for permanent implants, is used to 3D-print plaques and the geometrical accuracy of the printed design is evaluated by imaging. The possibility to modulate the dose distribution in a tridimensional manner is demonstrated by painting the inner surfaces of the EPs with radioactive 103Pd, followed by dose profile measurements. The possibility to modulate dose distributions generated by these 3D-printed plaques through radioactivity painting is therefore confirmed. Ex vivo surgical tests on human eyeballs are performed as an assessment of manipulation ease. Overall, this work provides a solution for the fabrication of tumor-specific radioactive implants requiring higher dose precision.


Asunto(s)
Braquiterapia , Radiactividad , Neoplasias de la Úvea , Humanos , Braquiterapia/métodos , Radioisótopos , Paladio , Neoplasias de la Úvea/diagnóstico por imagen , Neoplasias de la Úvea/radioterapia , Neoplasias de la Úvea/tratamiento farmacológico , Impresión Tridimensional
9.
Biomater Adv ; 153: 213533, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37392520

RESUMEN

In the biomedical field, 3D printing has the potential to deliver on some of the promises of personalized therapy, notably by enabling point-of-care fabrication of medical devices, dosage forms and bioimplants. To achieve this full potential, a better understanding of the 3D printing processes is necessary, and non-destructive characterization methods must be developed. This study proposes methodologies to optimize the 3D printing parameters for soft material extrusion. We hypothesize that combining image processing with design of experiment (DoE) analyses and machine learning could help obtaining useful information from a quality-by-design perspective. Herein, we investigated the impact of three critical process parameters (printing speed, printing pressure and infill percentage) on three critical quality attributes (gel weight, total surface area and heterogeneity) monitored with a non-destructive methodology. DoE and machine learning were combined to obtain information on the process. This work paves the way for a rational approach to optimize 3D printing parameters in the biomedical field.


Asunto(s)
Hidrogeles , Impresión Tridimensional , Aprendizaje Automático
10.
3D Print Addit Manuf ; 10(5): 869-886, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37886415

RESUMEN

A prominent obstacle in scaling up tissue engineering technologies for human applications is engineering an adequate supply of oxygen and nutrients throughout artificial tissues. Sugar glass has emerged as a promising 3D-printable, sacrificial material that can be used to embed perfusable networks within cell-laden matrices to improve mass transfer. To characterize and optimize a previously published sugar ink, we investigated the effects of sucrose, glucose, and dextran concentration on the glass transition temperature (Tg), printability, and stability of 3D-printed sugar glass constructs. We identified a sucrose ink formulation with a significantly higher Tg (40.0 ± 0.9°C) than the original formulation (sucrose-glucose blend, Tg = 26.2 ± 0.4°C), which demonstrated a pronounced improvement in printability, resistance to bending, and final print stability, all without changing dissolution kinetics and decomposition temperature. This formulation allowed printing of 10-cm-long horizontal cantilever filaments, which can enable the printing of complex vascular segments along the x-, y-, and z-axes without the need for supporting structures. Vascular templates with a single inlet and outlet branching into nine channels were 3D printed using the improved formulation and subsequently used to generate perfusable alginate constructs. The printed lattice showed high fidelity with respect to the input geometry, although with some channel deformation after alginate casting and gelation-likely due to alginate swelling. Compared with avascular controls, no significant acute cytotoxicity was noted when casting pancreatic beta cell-laden alginate constructs around improved ink filaments, whereas a significant decrease in cell viability was observed with the original ink. The improved formulation lends more flexibility to sugar glass 3D printing by facilitating the fabrication of larger, more complex, and more stable sacrificial networks. Rigorous characterization and optimization methods for improving sacrificial inks may facilitate the fabrication of functional cellular constructs for tissue engineering, cellular biology, and other biomedical applications.

11.
Langmuir ; 28(1): 774-82, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-21970413

RESUMEN

The performance of nanomaterials for biomedical applications is highly dependent on the nature and the quality of surface coatings. In particular, the development of functionalized nanoparticles for magnetic resonance imaging (MRI) requires the grafting of hydrophilic, nonimmunogenic, and biocompatible polymers such as poly(ethylene glycol) (PEG). Attached at the surface of nanoparticles, this polymer enhances the steric repulsion and therefore the stability of the colloids. In this study, phosphate molecules were used as an alternative to silanes or carboxylic acids, to graft PEG at the surface of ultrasmall gadolinium oxide nanoparticles (US-Gd(2)O(3), 2-3 nm diameter). This emerging, high-sensitivity "positive" contrast agent is used for signal enhancement in T(1)-weighted molecular and cellular MRI. Comparative grafting assays were performed on Gd(2)O(3) thin films, which demonstrated the strong reaction of phosphate with Gd(2)O(3) compared to silane and carboxyl groups. Therefore, PEG-phosphate was preferentially used to coat US-Gd(2)O(3) nanoparticles. The grafting of this polymer on the particles was confirmed by XPS and FTIR. These analyses also demonstrated the strong attachment of PEG-phosphate at the surface of Gd(2)O(3), forming a protective layer on the nanoparticles. The stability in aqueous solution, the relaxometric properties, and the MRI signal of PEG-phosphate-covered Gd(2)O(3) particles were also better than those from non-PEGylated nanoparticles. As a result, reacting PEG-phosphate with Gd(2)O(3) particles is a promising, rapid, one-step procedure to PEGylate US-Gd(2)O(3) nanoparticles, an emerging "positive" contrast agent for preclinical molecular and cellular applications.


Asunto(s)
Gadolinio/química , Nanopartículas , Polietilenglicoles/química , Imagen por Resonancia Magnética , Propiedades de Superficie
12.
Rev Sci Instrum ; 93(12): 123703, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36586915

RESUMEN

Diffusion cells are devices made of donor and acceptor compartments (DC and AC), separated by a membrane. They are widely used in pharmaceutical, cosmetic, toxicology, and protective equipment tests (e.g., gloves) to measure the kinetics of permeants (molecules and nanoparticles) across biological membranes as the skin. However, rarely is the concentration of permeants in the AC measured in continuous or in real-time, and this limitation leads to significant discrepancies in the calculations of kinetic parameters that define the permeation mechanisms. In this study, a diffusion cell compatible with positron emission tomography was used to measure the permeation kinetics of nanoparticles across glove membranes. The technology allows for the measurement of nanoparticle concentration in real-time in the two compartments (DC and AC) and at a detection sensitivity several orders of magnitude higher compared with conventional spectroscopies, thus allowing a much more precise extraction of kinetic parameters. Ultra-small (<10 nm) gold nanoparticles were used as a model nanoparticle contaminant. They were radiolabeled, and their diffusion kinetics was measured in continuous through latex and nitrile polymer membranes. Permeation profiles were recorded at sub-nanomolar sensitivity and in real-time, thus allowing the high precision extraction of kinetic permeation parameters. The technology, methodology, and data extraction process developed in this work could be applied to measure in real-time the kinetics of diffusion of a whole range of potentially toxic molecules and nanoparticles across polymer membranes, including glove membranes.


Asunto(s)
Nanopartículas del Metal , Polímeros , Guantes Protectores , Oro , Ensayo de Materiales , Permeabilidad , Tomografía de Emisión de Positrones
13.
ACS Biomater Sci Eng ; 8(3): 1200-1214, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35226460

RESUMEN

Cervical cancer is the fourth most common malignancy among women. Compared to other types of cancer, therapeutic agents can be administrated locally at the mucosal vaginal membrane. Thermosensitive gels have been developed over the years for contraception or for the treatment of bacterial, fungal, and sexually transmitted infections. These formulations often carry therapeutic nanoparticles and are now being considered in the arsenal of tools for oncology. They can also be three-dimensionally (3D) printed for a better geometrical adjustment to the anatomy of the patient, thus enhancing the local delivery treatment. In this study, a localized delivery system composed of a Pluronic F127-alginate hydrogel with efficient nanoparticle (NP) release properties was prepared for intravaginal application procedures. The kinetics of hydrogel degradation and its NP releasing properties were demonstrated with ultrasmall gold nanoparticles (∼80% of encapsulated AuNPs released in 48 h). The mucoadhesive properties of the hydrogel formulation were assayed by the periodic acid/Schiff reagent staining, which revealed that 19% of mucins were adsorbed on the gel's surface. The hydrogel formulation was tested for cytocompatibility in three cell lines (HeLa, CRL 2616, and BT-474; no sign of cytotoxicity revealed). The release of AuNPs from the hydrogel and their accumulation in vaginal membranes were quantitatively measured in vitro/ex vivo with positron emission tomography, a highly sensitive modality allowing real-time imaging of nanoparticle diffusion (lag time to start of permeation of 3.3 h, 47% of AuNPs accumulated in the mucosa after 42 h). Finally, the potential of the AuNP-containing Pluronic F127-alginate hydrogel for 3D printing was demonstrated, and the geometrical precision of the 3D printed systems was measured by magnetic resonance imaging (<0.5 mm precision; deviation from the design values <2.5%). In summary, this study demonstrates the potential of Pluronic F127-alginate formulations for the topical administration of NP-releasing gels applied to vaginal wall therapy. This technology could open new possibilities for photothermal and radiosensitizing oncology applications.


Asunto(s)
Nanopartículas del Metal , Neoplasias del Cuello Uterino , Alginatos , Femenino , Oro , Humanos , Hidrogeles , Masculino , Nanopartículas del Metal/uso terapéutico , Poloxámero , Neoplasias del Cuello Uterino/tratamiento farmacológico
14.
Bioact Mater ; 12: 64-70, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35087963

RESUMEN

In this exploratory work, micrometric radiopaque W-Fe-Mn-C coatings were produced by magnetron sputtering plasma deposition, for the first time, with the aim to make very thin Fe-Mn stents trackable by fluoroscopy. The power of Fe-13Mn-1.2C target was kept constant at 400 W while that of W target varied from 100 to 400 W producing three different coatings referred to as P100, P200, P400. The effect of the increased W power on coatings thickness, roughness, structure, corrosion behavior and radiopacity was investigated. The coatings showed a power-dependent thickness and W concentration, different roughness values while a similar and uniform columnar structure. An amorphous phase was detected for both P100 and P200 coatings while γ-Fe, bcc-W and W3C phases found for P400. Moreover, P200 and P400 showed a significantly higher corrosion rate (CR) compared to P100. The presence of W, W3C as well as the Fe amount variation determined two different micro-galvanic corrosion mechanisms significantly changing the CR of coatings, 0.26 ± 0.02, 59.68 ± 1.21 and 59.06 ± 1.16 µm/year for P100, P200 and P400, respectively. Sample P200 with its most uniform morphology, lowest roughness (RMS = 3.9 ± 0.4 nm) and good radiopacity (∼6%) appeared the most suitable radiopaque biodegradable coating investigated in this study.

15.
Nanotechnology ; 22(29): 295103, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21693804

RESUMEN

Ultra-small gadolinium oxide nanoparticles (US-Gd(2)O(3)) are used to provide 'positive' contrast effects in magnetic resonance imaging (MRI), and are being considered for molecular and cellular imaging applications. However, these nanoparticles can aggregate over time in aqueous medium, as well as when internalized into cells. This study is aimed at measuring in vitro, in aqueous medium, the impact of aggregation on the relaxometric properties of paramagnetic US-Gd(2)O(3) particles. First, the nanoparticle core size as well as aggregation behaviour was assessed by HRTEM. DLS (hydrodynamic diameter) was used to measure the hydrodynamic diameter of nanoparticles and nanoaggregates. The relaxometric properties were measured by NMRD profiling, as well as with (1)H NMR relaxometers. Then, the positive contrast enhancement effect was assessed by using magnetic resonance scanners (at 1.5 and 7 T). At every magnetic field, the longitudinal relaxivity (r(1)) decreased upon agglomeration, while remaining high enough to provide positive contrast. On the other hand, the transverse relaxivity (r(2)) slightly decreased at 0.47 and 1.41 T, but it was enhanced at higher fields (7 and 11.7 T) upon agglomeration. All NMRD profiles revealed a characteristic relaxivity peak in the range 60-100 MHz, suggesting the possibility to use US-Gd(2)O(3) as an efficient 'positive-T(1)' contrast agent at clinical magnetic fields (1-3 T), in spite of aggregation.


Asunto(s)
Gadolinio/química , Magnetismo , Nanopartículas/química , Tamaño de la Partícula , Simulación por Computador , Glicoles de Etileno/química , Espectroscopía de Resonancia Magnética , Nanopartículas/ultraestructura , Temperatura
16.
J Control Release ; 337: 661-675, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34271034

RESUMEN

Diffusion cells are routinely used in pharmacology to measure the permeation of pharmaceutical compounds and contaminants across membranes (biological or synthetic). They can also be used to study drug release from excipients. The device is made of a donor (DC) and an acceptor (AC) compartment, separated by a membrane. Usually, permeation of molecules across membranes is measured by sampling from the AC at different time points. However, this process disturbs the equilibrium of the cell. Furthermore, analytical techniques used in association with diffusion cells sometimes lack either accuracy, sensitivity, or both. This work reports on the development of nuclear imaging - compatible diffusion cells. The cell is made of a polymer transparent to high-energy photons typically detected in positron emission tomography (PET). It was tested in a finite-dose set-up experiment with a pre-clinical PET system. Porous cellulose membranes (3.5, 25 and 300 kDa), a common excipient in pharmacology, as well as for dialysis membranes, were used as test membranes. The radioisotope 89Zr chelated with deferoxamine B (DFO; 0.65 kDa), was used as an imaging probe (7-10 MBq; 0.2-0.3 nMol 89Zr-DFO). In medicine, DFO is also commonly used for iron removal treatments and pharmacological formulations often require the association of this molecule with cellulose. Permeation profiles were obtained by measuring the radioactivity in the DC and AC for up to 2 weeks. The kinetic profiles were used to extract lag time, influx, and diffusion coefficients of DFO across porous cellulose membranes. A sensitivity threshold of 0.005 MBq, or 3.4 fmol of 89Zr-DFO, was revealed. The lag time to permeation (τ) measured in the AC compartment, was found to be 1.33, 0.5, and 0.19 h with 3.5, 25, and 300 kDa membranes, respectively. Diffusion coefficients of 3.65 × 10-6, 8.33 × 10-6, and 4.74 × 10-5 cm2 h-1 where revealed, with maximal pseudo steady-state influx values (Jpss) of 6.55 × 10-6, 1.76 × 10-5, and 1.29 × 10-5 nmol cm-2 h-1. This study confirms the potential of the technology for monitoring molecular diffusion and release processes at low concentrations, high sensitivities, in real time and in a visual manner.


Asunto(s)
Deferoxamina , Circonio , Tomografía de Emisión de Positrones , Radioisótopos , Diálisis Renal , Distribución Tisular
17.
Adv Healthc Mater ; 7(16): e1701460, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29726118

RESUMEN

Over the last few decades, gold nanoparticles (GNPs) have emerged as "radiosensitizers" in oncology. Radiosensitizers are additives that can enhance the effects of radiation on biological tissues treated with radiotherapy. The interaction of photons with GNPs leads to the emission of low-energy and short-range secondary electrons, which in turn increase the dose deposited in tissues. In this context, GNPs are the subject of intensive theoretical and experimental studies aiming at optimizing the parameters leading to greater dose enhancement and highest therapeutic effect. This review describes the main mechanisms occurring between photons and GNPs that lead to dose enhancement. The outcome of theoretical simulations of the interactions between GNPs and photons is presented. Finally, the findings of the most recent in vivo studies about interactions between GNPs and photon sources (e.g., external beams, brachytherapy sources, and molecules labeled with radioisotopes) are described. The advantages and challenges inherent to each of these approaches are discussed. Future directions, providing new guidelines for the successful translation of GNPs into clinical applications, are also highlighted.


Asunto(s)
Braquiterapia/métodos , Oro/química , Nanopartículas del Metal/química , Humanos , Nanotecnología , Fotones , Fármacos Sensibilizantes a Radiaciones/química
18.
Heliyon ; 4(7): e00680, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29998199

RESUMEN

Alginate-based hydrogels are widely used for the development of biomedical scaffolds in regenerative medicine. The use of sugar glass as a sacrificial template for fluidic channels fabrication within alginate scaffolds remains a challenge because of the premature dissolution of sugar by the water contained in the alginate as well as the relatively slow internal gelation rate of the alginate. Here, a new and simple method, based on a sugar glass fugitive ink loaded with calcium chloride to build sacrificial molds, is presented. We used a dual calcium cross-linking process by adding this highly soluble calcium source in the printed sugar, thus allowing the rapid gelation of a thin membrane of alginate around the sugar construct, followed by the addition of calcium carbonate and gluconic acid δ-lactone to complete the process. This innovative technique results in the rapid formation of "on-demand" alginate hydrogel with complex fluidic channels that could be used in biomedical applications such as highly vascularized scaffolds promoting pathways for nutrients and oxygen to the cells.

19.
ACS Nano ; 12(3): 2482-2497, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29498821

RESUMEN

Gold nanoparticles (Au NPs) distributed in the vicinity of low-dose rate (LDR) brachytherapy seeds could multiply their efficacy thanks to the secondary emissions induced by the photoelectric effect. Injections of radioactive LDR gold nanoparticles (LDR Au NPs), instead of conventional millimeter-size radioactive seeds surrounded by Au NPs, could further enhance the dose by distributing the radioactivity more precisely and homogeneously in tumors. However, the potential of LDR Au NPs as an emerging strategy to treat cancer is strongly dependent on the macroscopic diffusion of the NPs in tumors, as well as on their microscopic internalization within the cells. Understanding the relationship between interstitial and intracellular distribution of NPs, and the outcomes of dose deposition in the cancer tissue is essential for considering future applications of radioactive Au NPs in oncology. Here, LDR Au NPs (103Pd:Pd@Au-PEG NPs) were injected in prostate cancer tumors. The particles were visualized at time-points by computed tomography imaging ( in vivo), transmission electron microscopy ( ex vivo), and optical microscopy ( ex vivo). These data were used in a Monte Carlo-based dosimetric model to reveal the dose deposition produced by LDR Au NPs both at tumoral and cellular scales. 103Pd:Pd@Au-PEG NPs injected in tumors produce a strong dose enhancement at the intracellular level. However, energy deposition is mainly confined around vesicles filled with NPs, and not necessarily close to the nuclei. This suggests that indirect damage caused by the production of reactive oxygen species might be the leading therapeutic mechanism of tumor growth control, over direct damage to the DNA.


Asunto(s)
Oro/administración & dosificación , Nanopartículas del Metal/administración & dosificación , Paladio/administración & dosificación , Neoplasias de la Próstata/radioterapia , Animales , Braquiterapia/métodos , Oro/farmacocinética , Oro/uso terapéutico , Humanos , Inyecciones Intralesiones , Masculino , Nanopartículas del Metal/análisis , Nanopartículas del Metal/uso terapéutico , Ratones , Método de Montecarlo , Células PC-3 , Paladio/farmacocinética , Paladio/uso terapéutico , Fotones , Neoplasias de la Próstata/patología , Radioisótopos/administración & dosificación , Radioisótopos/farmacocinética , Radioisótopos/uso terapéutico , Radiometría
20.
Int J Mol Med ; 19(2): 285-91, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17203203

RESUMEN

The direct instillation of radiolabelled conjugates in the urinary bladder is a promising path for the treatment of bladder carcinoma. The targeting of HER2/neu receptors expressed on the surface of many bladder carcinoma cells shows potential to be developed as a therapeutic strategy, and patients identified with a high risk of progression may benefit from adjuvant targeted radionuclide therapy. A phage-display selected Affibody molecule (Z(HER2:342)) which binds to HER2/neu with picomolar affinity, can be used for targeting HER2/neu-expressing bladder carcinomas. A DOTA-derivative of Z(HER2:342), designated as DOTA-Z(HER2:342)-3, is considered as a suitable targeting agent for therapy. The DOTA chelator provides stable labelling with radiometals, and the low molecular weight (7.2 kDa) of the DOTA-Z(HER2:342)-3 compound is expected to enable efficient tumor penetration. DOTA-Z(HER2:342)-3 was radiolabelled with 90Y and 177Lu in 1 M ammonium acetate buffer, at pH 5.5, and in the presence of ascorbic acid. Nearly quantitative labelling yields were achieved for both nuclides after 15 min of incubation at 60 degrees C. After chelation, the conjugates retained their capacity to specifically bind to HER2/neu-expressing SKOV-3 cells. The radiolabelled affibody conjugate (DOTA-Z(HER2:342)-3) demonstrated high antigen-binding capacity and good cellular retention. Biodistribution in normal mice demonstrated low uptake in all organs and tissues except for kidneys.


Asunto(s)
Proteínas Recombinantes de Fusión/uso terapéutico , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Radioisótopos de Itrio/uso terapéutico , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Ratones , Proteínas Recombinantes de Fusión/farmacocinética , Neoplasias de la Vejiga Urinaria/patología , Radioisótopos de Itrio/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA