Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Methods Mol Biol ; 2626: 399-444, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36715918

RESUMEN

Citizen science is a productive approach to include non-scientists in research efforts that impact particular issues or communities. In most cases, scientists at advanced career stages design high-quality, exciting projects that enable citizen contribution, a crowdsourcing process that drives discovery forward and engages communities. The challenges of having citizens design their own research with no or limited training and providing access to laboratory tools, reagents, and supplies have limited citizen science efforts. This leaves the incredible life experiences and immersion of citizens in communities that experience health disparities out of the research equation, thus hampering efforts to address community health needs with a full picture of the challenges that must be addressed. Here, we present a robust and reproducible approach that engages participants from Grade 5 through adult in research focused on defining how diet impacts disease signaling. We leverage the powerful genetics, cell biology, and biochemistry of Drosophila oogenesis to define how nutrients impact phenotypes associated with genetic mutants that are implicated in cancer and diabetes. Participants lead the project design and execution, flipping the top-down hierarchy of the prevailing scientific culture to co-create research projects and infuse the research with cultural and community relevance.


Asunto(s)
Drosophila , Salud Pública , Animales , Investigación
2.
Biol Open ; 9(7)2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32580972

RESUMEN

Polymerization of metabolic enzymes into micron-scale assemblies is an emerging mechanism for regulating their activity. CTP synthase (CTPS) is an essential enzyme in the biosynthesis of the nucleotide CTP and undergoes regulated and reversible assembly into large filamentous structures in organisms from bacteria to humans. The purpose of these assemblies is unclear. A major challenge to addressing this question has been the inability to abolish assembly without eliminating CTPS protein. Here we demonstrate that a recently reported point mutant in CTPS, Histidine 355A (H355A), prevents CTPS filament assembly in vivo and dominantly inhibits the assembly of endogenous wild-type CTPS in the Drosophila ovary. Expressing this mutant in ovarian germline cells, we show that disruption of CTPS assembly in early stage egg chambers reduces egg production. This effect is exacerbated in flies fed the glutamine antagonist 6-diazo-5-oxo-L-norleucine, which inhibits de novo CTP synthesis. These findings introduce a general approach to blocking the assembly of polymerizing enzymes without eliminating their catalytic activity and demonstrate a role for CTPS assembly in supporting egg production, particularly under conditions of limited glutamine metabolism.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Ligasas de Carbono-Nitrógeno/metabolismo , Drosophila/fisiología , Células Germinativas/metabolismo , Multimerización de Proteína , Reproducción , Animales , Ligasas de Carbono-Nitrógeno/química , Ligasas de Carbono-Nitrógeno/genética , Metabolismo Energético , Técnica del Anticuerpo Fluorescente , Expresión Génica , Glutamina/metabolismo , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA