Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 613(7943): 345-354, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36599983

RESUMEN

Understanding how a subset of expressed genes dictates cellular phenotype is a considerable challenge owing to the large numbers of molecules involved, their combinatorics and the plethora of cellular behaviours that they determine1,2. Here we reduced this complexity by focusing on cellular organization-a key readout and driver of cell behaviour3,4-at the level of major cellular structures that represent distinct organelles and functional machines, and generated the WTC-11 hiPSC Single-Cell Image Dataset v1, which contains more than 200,000 live cells in 3D, spanning 25 key cellular structures. The scale and quality of this dataset permitted the creation of a generalizable analysis framework to convert raw image data of cells and their structures into dimensionally reduced, quantitative measurements that can be interpreted by humans, and to facilitate data exploration. This framework embraces the vast cell-to-cell variability that is observed within a normal population, facilitates the integration of cell-by-cell structural data and allows quantitative analyses of distinct, separable aspects of organization within and across different cell populations. We found that the integrated intracellular organization of interphase cells was robust to the wide range of variation in cell shape in the population; that the average locations of some structures became polarized in cells at the edges of colonies while maintaining the 'wiring' of their interactions with other structures; and that, by contrast, changes in the location of structures during early mitotic reorganization were accompanied by changes in their wiring.


Asunto(s)
Células Madre Pluripotentes Inducidas , Espacio Intracelular , Humanos , Células Madre Pluripotentes Inducidas/citología , Análisis de la Célula Individual , Conjuntos de Datos como Asunto , Interfase , Forma de la Célula , Mitosis , Polaridad Celular , Supervivencia Celular
2.
Theor Appl Genet ; 137(5): 117, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700534

RESUMEN

KEY MESSAGE: A large-effect QTL was fine mapped, which revealed 79 gene models, with 10 promising candidate genes, along with a novel inversion. In commercial maize breeding, doubled haploid (DH) technology is arguably the most efficient resource for rapidly developing novel, completely homozygous lines. However, the DH strategy, using in vivo haploid induction, currently requires the use of mutagenic agents which can be not only hazardous, but laborious. This study focuses on an alternative approach to develop DH lines-spontaneous haploid genome duplication (SHGD) via naturally restored haploid male fertility (HMF). Inbred lines A427 and Wf9, the former with high HMF and the latter with low HMF, were selected to fine-map a large-effect QTL associated with SHGD-qshgd1. SHGD alleles were derived from A427, with novel haploid recombinant groups having varying levels of the A427 chromosomal region recovered. The chromosomal region of interest is composed of 45 megabases (Mb) of genetic information on chromosome 5. Significant differences between haploid recombinant groups for HMF were identified, signaling the possibility of mapping the QTL more closely. Due to suppression of recombination from the proximity of the centromere, and a newly discovered inversion region, the associated QTL was only confined to a 25 Mb region, within which only a single recombinant was observed among ca. 9,000 BC1 individuals. Nevertheless, 79 gene models were identified within this 25 Mb region. Additionally, 10 promising candidate genes, based on RNA-seq data, are described for future evaluation, while the narrowed down genome region is accessible for straightforward introgression into elite germplasm by BC methods.


Asunto(s)
Mapeo Cromosómico , Haploidia , Sitios de Carácter Cuantitativo , Zea mays , Zea mays/genética , Mapeo Cromosómico/métodos , Fitomejoramiento , Genoma de Planta , Fenotipo , Alelos , Cromosomas de las Plantas/genética , Genes de Plantas
3.
Front Plant Sci ; 15: 1378421, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708398

RESUMEN

Doubled haploid (DH) line production through in vivo maternal haploid induction is widely adopted in maize breeding programs. The established protocol for DH production includes four steps namely in vivo maternal haploid induction, haploid identification, genome doubling of haploid, and self-fertilization of doubled haploids. Since modern haploid inducers still produce relatively small portion of haploids among undesirable hybrid kernels, haploid identification is typically laborious, costly, and time-consuming, making this step the second foremost in the DH technique. This manuscript reviews numerous methods for haploid identification from different approaches including the innate differences in haploids and diploids, biomarkers integrated in haploid inducers, and automated seed sorting. The phenotypic differentiation, genetic basis, advantages, and limitations of each biomarker system are highlighted. Several approaches of automated seed sorting from different research groups are also discussed regarding the platform or instrument used, sorting time, accuracy, advantages, limitations, and challenges before they go through commercialization. The past haploid selection was focusing on finding the distinguishable marker systems with the key to effectiveness. The current haploid selection is adopting multiple reliable biomarker systems with the key to efficiency while seeking the possibility for automation. Fully automated high-throughput haploid sorting would be promising in near future with the key to robustness with retaining the feasible level of accuracy. The system that can meet between three major constraints (time, workforce, and budget) and the sorting scale would be the best option.

4.
Cureus ; 15(3): e36150, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37065344

RESUMEN

Bleomycin, a common antineoplastic agent, is known to cause bleomycin pulmonary toxicity when the lungs are exposed to a high fraction of inspired oxygen (FiO2) level. Thus, intraoperative one-lung ventilation (OLV) is challenging in a patient with bleomycin treatment because maintaining high FiO2 during OLV is a common practice in thoracic surgery to ensure adequate oxygenation while providing adequate lung isolation. We report two thoracic surgical cases where prophylactic continuous positive airway pressure (CPAP) was applied on the non-dependent lung during OLV while limiting FiO2 to prevent postoperative respiratory complications.

5.
Methods Mol Biol ; 2484: 213-235, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35461455

RESUMEN

Doubled haploid (DH) technology reduces the time required to obtain homozygous genotypes and accelerates plant breeding among other advantages. It is established in major crop species such as wheat, barley, maize, and canola. DH lines can be produced by both in vitro and in vivo methods and the latter is focused here. The major steps involved in in vivo DH technology are haploid induction, haploid selection/identification, and haploid genome doubling. Herein, we elaborate on the various steps of DH technology in maize breeding from haploid induction to haploid genome doubling to produce DH lines. Detailed protocols on the following topics are discussed: in vivo haploid inducer line development, haploid selection using seed and root color markers and automated seed sorting based on embryo oil content using QSorter, artificial genome doubling, and the identification of genotypes with spontaneous haploid genome doubling (SHGD) ability.


Asunto(s)
Fitomejoramiento , Zea mays , Genoma de Planta , Haploidia , Fitomejoramiento/métodos , Tecnología , Zea mays/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA