Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
EClinicalMedicine ; 71: 102490, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38813445

RESUMEN

Background: Urinary tract infections (UTI) affect approximately 250 million people annually worldwide. Patients often experience a cycle of antimicrobial treatment and recurrent UTI (rUTI) that is thought to be facilitated by a gut reservoir of uropathogenic Escherichia coli (UPEC). Methods: 125 patients with UTI caused by an antibiotic-resistant organism (ARO) were enrolled from July 2016 to May 2019 in a longitudinal, multi-center cohort study. Multivariate statistical models were used to assess the relationship between uropathogen colonization and recurrent UTI (rUTI), controlling for clinical characteristics. 644 stool samples and 895 UPEC isolates were interrogated for taxonomic composition, antimicrobial resistance genes, and phenotypic resistance. Cohort UTI gut microbiome profiles were compared against published healthy and UTI reference microbiomes, as well as assessed within-cohort for timepoint- and recurrence-specific differences. Findings: Risk of rUTI was not independently associated with clinical characteristics. The UTI gut microbiome was distinct from healthy reference microbiomes in both taxonomic composition and antimicrobial resistance gene (ARG) burden, with 11 differentially abundant taxa at the genus level. rUTI and non-rUTI gut microbiomes in the cohort did not generally differ, but gut microbiomes from urinary tract colonized patients were elevated in E. coli abundance 7-14 days post-antimicrobial treatment. Corresponding UPEC gut isolates from urinary tract colonizing lineages showed elevated phenotypic resistance against 11 of 23 tested drugs compared to non-colonizing lineages. Interpretation: The gut microbiome is implicated in UPEC urinary tract colonization during rUTI, serving as an ARG-enriched reservoir for UPEC. UPEC can asymptomatically colonize the gut and urinary tract, and post-antimicrobial blooms of gut E. coli among urinary tract colonized patients suggest that cross-habitat migration of UPEC is an important mechanism of rUTI. Thus, treatment duration and UPEC populations in both the urinary and gastrointestinal tract should be considered in treating rUTI and developing novel therapeutics. Funding: This work was supported in part by awards from the U.S. Centers for Disease Control and Prevention Epicenter Prevention Program (grant U54CK000482; principal investigator, V.J.F.); to J.H.K. from the Longer Life Foundation (an RGA/Washington University partnership), the National Center for Advancing Translational Sciences (grants KL2TR002346 and UL1TR002345), and the National Institute of Allergy and Infectious Diseases (NIAID) (grant K23A1137321) of the National Institutes of Health (NIH); and to G.D. from NIAID (grant R01AI123394) and the Eunice Kennedy Shriver National Institute of Child Health and Human Development (grant R01HD092414) of NIH. R.T.'s research was funded by the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation; grant 402733540). REDCap is Supported by Clinical and Translational Science Award (CTSA) Grant UL1 TR002345 and Siteman Comprehensive Cancer Center and NCI Cancer Center Support Grant P30 CA091842. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

2.
Cell Host Microbe ; 30(7): 1034-1047.e6, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35545083

RESUMEN

Large-scale genomic studies have identified within-host adaptation as a hallmark of bacterial infections. However, the impact of physiological, metabolic, and immunological differences between distinct niches on the pathoadaptation of opportunistic pathogens remains elusive. Here, we profile the within-host adaptation and evolutionary trajectories of 976 isolates representing 119 lineages of uropathogenic Escherichia coli (UPEC) sampled longitudinally from both the gastrointestinal and urinary tracts of 123 patients with urinary tract infections. We show that lineages persisting in both niches within a patient exhibit increased allelic diversity. Habitat-specific selection results in niche-specific adaptive mutations and genes, putatively mediating fitness in either environment. Within-lineage inter-habitat genomic plasticity mediated by mobile genetic elements (MGEs) provides the opportunistic pathogen with a mechanism to adapt to the physiological conditions of either habitat, and reduced MGE richness is associated with recurrence in gut-adapted UPEC lineages. Collectively, our results establish niche-specific adaptation as a driver of UPEC within-host evolution.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Adaptación al Huésped , Infecciones Urinarias , Escherichia coli Uropatógena , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Adaptación al Huésped/genética , Humanos , Secuencias Repetitivas Esparcidas , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/genética
3.
EClinicalMedicine ; 54: 101698, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36277312

RESUMEN

Background: Traditional approaches for surgical site infection (SSI) surveillance have deficiencies that delay detection of SSI outbreaks and other clinically important increases in SSI rates. We investigated whether use of optimised statistical process control (SPC) methods and feedback for SSI surveillance would decrease rates of SSI in a network of US community hospitals. Methods: We conducted a stepped wedge cluster randomised trial of patients who underwent any of 13 types of common surgical procedures across 29 community hospitals in the Southeastern United States. We divided the 13 procedures into six clusters; a cluster of procedures at a single hospital was the unit of randomisation and analysis. In total, 105 clusters were randomised to 12 groups of 8-10 clusters. All participating clusters began the trial in a 12-month baseline period of control or "traditional" SSI surveillance, including prospective analysis of SSI rates and consultative support for SSI outbreaks and investigations. Thereafter, a group of clusters transitioned from control to intervention surveillance every three months until all clusters received the intervention. Electronic randomisation by the study statistician determined the sequence by which clusters crossed over from control to intervention surveillance. The intervention was the addition of weekly application of optimised SPC methods and feedback to existing traditional SSI surveillance methods. Epidemiologists were blinded to hospital identity and randomisation status while adjudicating SPC signals of increased SSI rates, but blinding was not possible during SSI investigations. The primary outcome was the overall SSI prevalence rate (PR=SSIs/100 procedures), evaluated via generalised estimating equations with a Poisson regression model. Secondary outcomes compared traditional and optimised SPC signals that identified SSI rate increases, including the number of formal SSI investigations generated and deficiencies identified in best practices for SSI prevention. This trial was registered at ClinicalTrials.gov, NCT03075813. Findings: Between Mar 1, 2016, and Feb 29, 2020, 204,233 unique patients underwent 237,704 surgical procedures. 148,365 procedures received traditional SSI surveillance and feedback alone, and 89,339 procedures additionally received the intervention of optimised SPC surveillance. The primary outcome of SSI was assessed for all procedures performed within participating clusters. SSIs occurred after 1171 procedures assigned control surveillance (prevalence rate [PR] 0.79 per 100 procedures), compared to 781 procedures that received the intervention (PR 0·87 per 100 procedures; model-based PR ratio 1.10, 95% CI 0.94-1.30, p=0.25). Traditional surveillance generated 24 formal SSI investigations that identified 120 SSIs with deficiencies in two or more perioperative best practices for SSI prevention. In comparison, optimised SPC surveillance generated 74 formal investigations that identified 458 SSIs with multiple best practice deficiencies. Interpretation: The addition of optimised SPC methods and feedback to traditional methods for SSI surveillance led to greater detection of important SSI rate increases and best practice deficiencies but did not decrease SSI rates. Additional research is needed to determine how to best utilise SPC methods and feedback to improve adherence to SSI quality measures and prevent SSIs. Funding: Agency for Healthcare Research and Quality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA