Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Microbiol ; 109(6): 845-864, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30039521

RESUMEN

The LysR-type transcriptional regulator (LTTR) AlsR from Bacillus subtilis activates the transcription of the alsSD operon encoding enzymes for acetoin formation in response to the presence of acetate. The structural basis for effector binding, oligomerization, DNA binding, higher ordered complex formation, DNA bending and transcriptional control by B. subtilis AlsR was functionally characterized. The binding of two molecules of acetate per molecule AlsR was determined. Acetate-dependent transcription complex formation was observed. A structural model of AlsR was used to identify the amino acid residues V98, S100, H147 of the binding site 1, which were experimentally verified. The second binding site formed by T193, V194, A196, T201 and L202 mediated high acetate responsive induction. Residues L124, E225 Q74, I79 and R111 contributed to dimerization of AlsR. A22, Q29, P30, S33, K37, L39, E46, R50 and R53 of the winged helix-turn-helix motif were important for promoter recognition. The DNA binding domain alone dimerized and effectively bound the promoter. The LTTR promoter elements RBS and ABS had to be localized on the same site of the DNA. Higher ordered complex formation resulted in bending of promoter DNA and transcriptional activation.


Asunto(s)
Bacillus subtilis/genética , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Proteínas Represoras/genética , Proteínas Bacterianas/genética , Sitios de Unión/genética , Dominios Proteicos/genética , Transactivadores/genética , Factores de Transcripción/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-23695583

RESUMEN

AlsR from Bacillus subtilis, a member of the LysR-type transcriptional regulator (LTTR) family, regulates the transcription of the alsSD operon encoding enzymes involved in acetoin biosynthesis. LTTRs represent the largest known family of transcriptional regulators in bacteria. In this study, AlsR82-302S100A, representing the effector domain, was produced in Escherichia coli, purified and crystallized using the sitting-drop vapour-diffusion method in the presence of 2.1 M DL-malic acid pH 7.0 at 293 K. The crystals belonged to space group C2, with unit-cell parameters a = 142.91, b = 74.96, c = 94.39 Å, ß = 110.543°. X-ray data extending to a resolution of 2.6 Šwere collected.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Elementos Reguladores de la Transcripción , Proteínas Bacterianas/genética , Cristalización , Cristalografía por Rayos X , Estructura Terciaria de Proteína , Elementos Reguladores de la Transcripción/genética , Factores de Transcripción/química , Factores de Transcripción/genética
3.
J Bacteriol ; 194(5): 1100-12, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22178965

RESUMEN

Bacillus subtilis forms acetoin under anaerobic fermentative growth conditions and as a product of the aerobic carbon overflow metabolism. Acetoin formation from pyruvate requires α-acetolactate synthase and acetolactate decarboxylase, both encoded by the alsSD operon. The alsR gene, encoding the LysR-type transcriptional regulator AlsR, was found to be essential for the in vivo expression of alsSD in response to anaerobic acetate accumulation, the addition of acetate, low pH, and the aerobic stationary phase. The expressions of the alsSD operon and the alsR regulatory gene were independent of other regulators of the anaerobic regulatory network, including ResDE, Fnr, and ArfM. A negative autoregulation of alsR was observed. In vitro transcription from the alsSD promoter using purified B. subtilis RNA polymerase required AlsR. DNA binding studies with purified recombinant AlsR in combination with promoter mutagenesis experiments identified a 19-bp high-affinity palindromic binding site (TAAT-N(11)-ATTA) at positions -76 to -58 (regulatory binding site [RBS]) and a low-affinity site (AT-N(11)-AT) at positions -41 to -27 (activator binding site [ABS]) upstream of the transcriptional start site of alsSD. The RBS and ABS were found to be essential for in vivo alsSD transcription. AlsR binding to both sites induced the formation of higher-order, transcription-competent complexes. The AlsR protein carrying the S100A substitution at the potential coinducer binding site still bound to the RBS and ABS. However, AlsR(S100A) failed to form the higher-order complex and to initiate in vivo and in vitro transcription. A model for AlsR promoter binding and transcriptional activation was deduced.


Asunto(s)
Acetoína/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Regulación Bacteriana de la Expresión Génica , Operón , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Sitios de Unión , Análisis Mutacional de ADN , ADN Bacteriano/metabolismo , Modelos Biológicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Unión Proteica , Factores de Transcripción/genética , Transcripción Genética
4.
J Biol Chem ; 286(3): 2017-21, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21068385

RESUMEN

The Bacillus subtilis redox regulator Fnr controls genes of the anaerobic metabolism in response to low oxygen tension. An unusual structure for the oxygen-sensing [4Fe-4S](2+) cluster was detected by a combination of genetic experiments with UV-visible and Mössbauer spectroscopy. Asp-141 was identified as the fourth iron-sulfur cluster ligand besides three Cys residues. Exchange of Asp-141 with Ala abolished functional in vivo complementation of an fnr knock-out strain by the mutagenized fnr gene and in vitro DNA binding of the recombinant regulator FnrD141A. In contrast, substitution of Asp-141 with Cys preserved [4Fe-4S](2+) structure and regulator function.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Factores de Transcripción/metabolismo , Sustitución de Aminoácidos , Ácido Aspártico/química , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Bacillus subtilis/química , Bacillus subtilis/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Ligandos , Mutación Missense , Estructura Terciaria de Proteína , Factores de Transcripción/química , Factores de Transcripción/genética
5.
Toxins (Basel) ; 8(1)2016 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-26797634

RESUMEN

Clostridium difficile infections can induce mild to severe diarrhoea and the often associated characteristic pseudomembranous colitis. Two protein toxins, the large glucosyltransferases TcdA and TcdB, are the main pathogenicity factors that can induce all clinical symptoms in animal models. The classical molecular mode of action of these homologous toxins is the inhibition of Rho GTPases by mono-glucosylation. Rho-inhibition leads to breakdown of the actin cytoskeleton, induces stress-activated and pro-inflammatory signaling and eventually results in apoptosis of the affected cells. An increasing number of reports, however, have documented further qualities of TcdA and TcdB, including the production of reactive oxygen species (ROS) by target cells. This review summarizes observations dealing with the production of ROS induced by TcdA and TcdB, dissects pathways that contribute to this phenomenon and speculates about ROS in mediating pathogenesis. In conclusion, ROS have to be considered as a discrete, glucosyltransferase-independent quality of at least TcdB, triggered by different mechanisms.


Asunto(s)
Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/toxicidad , Enterotoxinas/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Animales , Muerte Celular , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA