Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 296: 100422, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33607109

RESUMEN

Despite being initially regarded as a metabolic waste product, lactate is now considered to serve as a primary fuel for the tricarboxylic acid cycle in cancer cells. At the core of lactate metabolism, lactate dehydrogenases (LDHs) catalyze the interconversion of lactate to pyruvate and as such represent promising targets in cancer therapy. However, direct inhibition of the LDH active site is challenging from physicochemical and selectivity standpoints. However, LDHs are obligate tetramers. Thus, targeting the LDH tetrameric interface has emerged as an appealing strategy. In this work, we examine a dimeric construct of truncated human LDH to search for new druggable sites. We report the identification and characterization of a new cluster of interactions in the LDH tetrameric interface. Using nanoscale differential scanning fluorimetry, chemical denaturation, and mass photometry, we identified several residues (E62, D65, L71, and F72) essential for LDH tetrameric stability. Moreover, we report a family of peptide ligands based on this cluster of interactions. We next demonstrated these ligands to destabilize tetrameric LDHs through binding to this new tetrameric interface using nanoscale differential scanning fluorimetry, NMR water-ligand observed via gradient spectroscopy, and microscale thermophoresis. Altogether, this work provides new insights on the LDH tetrameric interface as well as valuable pharmacological tools for the development of LDH tetramer disruptors.


Asunto(s)
Mapeo Epitopo/métodos , L-Lactato Deshidrogenasa/metabolismo , Humanos , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/fisiología , Lactato Deshidrogenasas/metabolismo , Ácido Láctico/metabolismo , Ligandos , Imagen por Resonancia Magnética/métodos , Péptidos/metabolismo
2.
J Biol Chem ; 296: 100699, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33895133

RESUMEN

N-acetylneuraminate (Neu5Ac), an abundant sugar present in glycans in vertebrates and some bacteria, can be used as an energy source by several prokaryotes, including Escherichia coli. In solution, more than 99% of Neu5Ac is in cyclic form (≈92% beta-anomer and ≈7% alpha-anomer), whereas <0.5% is in the open form. The aldolase that initiates Neu5Ac metabolism in E. coli, NanA, has been reported to act on the alpha-anomer. Surprisingly, when we performed this reaction at pH 6 to minimize spontaneous anomerization, we found NanA and its human homolog NPL preferentially metabolize the open form of this substrate. We tested whether the E. coli Neu5Ac anomerase NanM could promote turnover, finding it stimulated the utilization of both beta and alpha-anomers by NanA in vitro. However, NanM is localized in the periplasmic space and cannot facilitate Neu5Ac metabolism by NanA in the cytoplasm in vivo. We discovered that YhcH, a cytoplasmic protein encoded by many Neu5Ac catabolic operons and belonging to a protein family of unknown function (DUF386), also facilitated Neu5Ac utilization by NanA and NPL and displayed Neu5Ac anomerase activity in vitro. YhcH contains Zn, and its accelerating effect on the aldolase reaction was inhibited by metal chelators. Remarkably, several transition metals accelerated Neu5Ac anomerization in the absence of enzyme. Experiments with E. coli mutants indicated that YhcH expression provides a selective advantage for growth on Neu5Ac. In conclusion, YhcH plays the unprecedented role of providing an aldolase with the preferred unstable open form of its substrate.


Asunto(s)
Fructosa-Bifosfato Aldolasa/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Escherichia coli/enzimología , Fructosa-Bifosfato Aldolasa/química , Modelos Moleculares , Ácido N-Acetilneuramínico/química , Periplasma/metabolismo , Conformación Proteica , Transporte de Proteínas , Estereoisomerismo
3.
Int J Mol Sci ; 22(21)2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34769368

RESUMEN

Glioblastoma represents the highest grade of brain tumors. Despite maximal resection surgery associated with radiotherapy and concomitant followed by adjuvant chemotherapy with temozolomide (TMZ), patients have a very poor prognosis due to the rapid recurrence and the acquisition of resistance to TMZ. Here, initially considering that TMZ is a prodrug whose activation is pH-dependent, we explored the contribution of glioblastoma cell metabolism to TMZ resistance. Using isogenic TMZ-sensitive and TMZ-resistant human glioblastoma cells, we report that the expression of O6-methylguanine DNA methyltransferase (MGMT), which is known to repair TMZ-induced DNA methylation, does not primarily account for TMZ resistance. Rather, fitter mitochondria in TMZ-resistant glioblastoma cells are a direct cause of chemoresistance that can be targeted by inhibiting oxidative phosphorylation and/or autophagy/mitophagy. Unexpectedly, we found that PARP inhibitor olaparib, but not talazoparib, is also a mitochondrial Complex I inhibitor. Hence, we propose that the anticancer activities of olaparib in glioblastoma and other cancer types combine DNA repair inhibition and impairment of cancer cell respiration.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Ftalazinas/farmacología , Piperazinas/farmacología , Temozolomida/farmacología , Antineoplásicos Alquilantes/farmacología , Apoptosis , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Proliferación Celular , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Células Tumorales Cultivadas
4.
Molecules ; 26(2)2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33477510

RESUMEN

The serine biosynthetic pathway is a key element contributing to tumor proliferation. In recent years, targeting of phosphoglycerate dehydrogenase (PHGDH), the first enzyme of this pathway, intensified and revealed to be a promising strategy to develop new anticancer drugs. Among attractive PHGDH inhibitors are the α-ketothioamides. In previous work, we have demonstrated their efficacy in the inhibition of PHGDH in vitro and in cellulo. However, the precise site of action of this series, which would help the rational design of new inhibitors, remained undefined. In the present study, the detailed mechanism-of-action of a representative α-ketothioamide inhibitor is reported using several complementary experimental techniques. Strikingly, our work led to the identification of an allosteric site on PHGDH that can be targeted for drug development. Using mass spectrometry experiments and an original α-ketothioamide diazirine-based photoaffinity probe, we identified the 523Q-533F sequence on the ACT regulatory domain of PHGDH as the binding site of α-ketothioamides. Mutagenesis experiments further documented the specificity of our compound at this allosteric site. Our results thus pave the way for the development of new anticancer drugs using a completely novel mechanism-of-action.


Asunto(s)
Diazometano/química , Inhibidores Enzimáticos/farmacología , Espectrometría de Masas/métodos , Fosfoglicerato-Deshidrogenasa/antagonistas & inhibidores , Fosfoglicerato-Deshidrogenasa/metabolismo , Sitio Alostérico , Aspartato Quinasa/química , Aspartato Quinasa/metabolismo , Sitios de Unión , Corismato Mutasa/química , Corismato Mutasa/metabolismo , Humanos , Estructura Molecular , Dominios Proteicos , Relación Estructura-Actividad
5.
Pharm Res ; 33(7): 1671-81, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26984129

RESUMEN

PURPOSE: Pulmonary drug delivery is considered an attractive route of drug administration for lung cancer chemotherapy. However, fast clearance mechanisms result in short residence time of small molecule drugs in the lung. Therefore, achieving a sustained presence of chemotherapeutics in the lung is very challenging. In this study, we synthesized two different polyethylene glycol-paclitaxel ester conjugates with molecular weights of 6 and 20 kDa in order to achieve sustained release of paclitaxel in the lung. METHODS: One structure was synthesized with azide linker using "click" chemistry and the other structure was synthesized with a succinic spacer. The physicochemical and biological properties of the conjugates were characterized in vitro. RESULTS: Conjugation to polyethylene glycol improved the solubility of paclitaxel by up to four orders of magnitude. The conjugates showed good stability in phosphate buffer saline pH 6.9 (half-life ≥72 h) and in bronchoalveolar lavage (half-life of 3 to 9 h) at both molecular weights, but hydrolyzed quickly in mouse serum (half-life of 1 to 3 h). The conjugates showed cytotoxicity to B16-F10 melanoma cells and LL/2 Lewis lung cancer cells but less than free paclitaxel or Taxol, the commercial paclitaxel formulation. CONCLUSIONS: These properties imply that the conjugates have the potential to retain paclitaxel in the lung for a prolonged duration and to sustain its release locally for a better efficacy.


Asunto(s)
Neoplasias Pulmonares/tratamiento farmacológico , Paclitaxel/química , Paclitaxel/farmacología , Polietilenglicoles/química , Animales , Lavado Broncoalveolar/métodos , Línea Celular Tumoral , Química Farmacéutica/métodos , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacología , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Femenino , Semivida , Melanoma Experimental/tratamiento farmacológico , Ratones , Peso Molecular
6.
Bioorg Med Chem ; 23(22): 7340-7, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26526740

RESUMEN

Inhibition of receptor tyrosine kinases (RTKs) continued to be a successful approach for the treatment of many types of human cancers and many potent small molecules kinase inhibitors have been discovered the last decade. In the present study, we describe the synthesis of thienopyrimidine derivatives and their pharmacological evaluation against nine kinases (EGFR, PDGFR-ß, c-Kit, c-Met, Src, Raf, VEGFR-1, -2 and -3). Most of the synthesized compounds showed from moderate to potent activities against c-Kit with IC50 values in the nanomolar range. Among them, 4-anilino(urea)thienopyrimidine analogs showed selectivity and potent c-Kit inhibition with IC50 values less than 6 nM. Docking simulation was performed for the most promising compound 9 into the c-Kit active site to determine the potential binding mode. This study reveal that the 4-anilino(urea)thienopyrimidine is an interesting scaffold to design novel potent and selective c-Kit inhibitors which may make promising candidates for cancers where c-Kit receptors are overexpressed.


Asunto(s)
Inhibidores de Proteínas Quinasas/síntesis química , Proteínas Proto-Oncogénicas c-kit/antagonistas & inhibidores , Urea/análogos & derivados , Sitios de Unión , Humanos , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Unión Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-kit/metabolismo , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/metabolismo , Relación Estructura-Actividad , Urea/síntesis química , Urea/metabolismo , Urea/farmacología
7.
Proc Natl Acad Sci U S A ; 109(7): 2497-502, 2012 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22308364

RESUMEN

Tryptophan catabolism mediated by indoleamine 2,3-dioxygenase (IDO1) is an important mechanism of peripheral immune tolerance contributing to tumoral immune resistance, and IDO1 inhibition is an active area of drug development. Tryptophan 2,3-dioxygenase (TDO) is an unrelated hepatic enzyme that also degrades tryptophan along the kynurenine pathway. Here, we show that enzymatically active TDO is expressed in a significant proportion of human tumors. In a preclinical model, TDO expression by tumors prevented their rejection by immunized mice. We developed a TDO inhibitor, which, upon systemic treatment, restored the ability of mice to reject TDO-expressing tumors. Our results describe a mechanism of tumoral immune resistance based on TDO expression and establish proof-of-concept for the use of TDO inhibitors in cancer therapy.


Asunto(s)
Neoplasias/inmunología , Triptófano Oxigenasa/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Humanos , Ratones , Triptófano Oxigenasa/metabolismo
8.
RSC Adv ; 14(8): 5492-5498, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38352674

RESUMEN

In recent years, bioorthogonal uncaging reactions have been developed to proceed efficiently under physiological conditions. However, limited progress has been made in the development of protecting groups combining stability under physiological settings with the ability to be quickly removed via bioorthogonal catalysis. Herein, we present a new water-soluble coumarin-derived probe bearing an internal nucleophilic group capable of promoting Tsuji-Trost deallylation under palladium catalysis. This probe can be cleaved by a bioorthogonal palladium complex at a faster rate than the traditional probe, namely N-Alloc-7-amino-4-methylcoumarin. As the deallylation process proved to be efficient in mammalian cells, we envision that this probe may find applications in chemical biology, bioengineering, and medicine.

9.
Int J Pharm ; 657: 124132, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38641019

RESUMEN

Targeting enzymes involved in lipid metabolism is increasingly recognized as a promising anticancer strategy. Efficient inhibition of diacylglycerol O-transferase 1 (DGAT1) can block fatty acid (FA) storage. This, in turn, triggers an increase in free polyunsaturated FA concentration, leading to peroxidation and ferroptosis. In this study, we report the development of a pH-sensitive peptide (pHLIP)-drug conjugate designed to selectively deliver DGAT1 inhibitors to cancer cells nested within the acidic microenvironment of tumors. We utilized two previously established pHLIP sequences for coupling with drugs. The study of DGAT1 conjugates in large unilamellar vesicles (LUVs) of different compositions did not reveal enhanced pH-dependent insertion compared to POPC LUVs. However, using in vitro 3D tumor spheroids, significant antiproliferative effects were observed upon exposure to pHLIP-T863 (DGAT1 inhibitor) conjugates, surpassing the inhibitory activity of T863 alone. In conclusion, our study provides the first evidence that pHLIP-based conjugates with DGAT1 inhibitors have the potential to specifically target the acidic compartment of tumors. Moreover, it sheds light on the limitations of LUV models in capturing the pH-dependency of such conjugates.


Asunto(s)
Antineoplásicos , Proliferación Celular , Diacilglicerol O-Acetiltransferasa , Diacilglicerol O-Acetiltransferasa/antagonistas & inhibidores , Humanos , Concentración de Iones de Hidrógeno , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Péptidos/química , Péptidos/farmacología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Esferoides Celulares/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Proteínas de la Membrana
10.
Bioorg Med Chem Lett ; 23(1): 47-54, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23218716

RESUMEN

Tsitsikammamines are marine alkaloids whose structure is based on the pyrroloiminoquinone scaffold. These and related compounds have attracted attention due to various interesting biological properties, including cytotoxicity, topoisomerase inhibition, antimicrobial, antifungal and antimalarial activity. Indoleamine 2,3-dioxygenase (IDO1) is a well-established therapeutic target as an important factor in the tumor immune evasion mechanism. In this preliminary communication, we report the inhibitory activity of tsitsikammamine derivatives against IDO1. Tsitsikammamine A analogue 11b displays submicromolar potency in an enzymatic assay. A number of derivatives are also active in a cellular assay while showing little or no activity towards tryptophan 2,3-dioxygenase (TDO), a functionally related enzyme. This IDO1 inhibitory activity is rationalized by molecular modeling studies. An interest is thus established in this class of compounds as a potential source of lead compounds for the development of new pharmaceutically useful IDO1 inhibitors.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Pirroles/química , Quinolinas/química , Alcaloides/síntesis química , Alcaloides/química , Alcaloides/toxicidad , Sitios de Unión , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Simulación del Acoplamiento Molecular , Estructura Terciaria de Proteína , Pirroles/síntesis química , Pirroles/toxicidad , Quinolinas/síntesis química , Quinolinas/toxicidad , Relación Estructura-Actividad
11.
Bioorg Med Chem ; 21(6): 1451-64, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23168081

RESUMEN

Carbonic anhydrase (CA) IX expression is increased upon hypoxia and has been proposed as a therapeutic target since it has been associated with poor prognosis, tumor progression and pH regulation. We report the synthesis and the pharmacological evaluation of a new class of human carbonic anhydrase (hCA) inhibitors, 4-(5-aryl-2-hydroxymethyl-pyrazol-1-yl)-benzenesulfonamides. A molecular modeling study was conducted in order to simulate the binding mode of this new family of enzyme inhibitors within the active site of hCA IX. Pharmacological studies revealed high hCA IX inhibitory potency in the parameters nanomolar range. This study showed that the position of sulfonamide group in meta of the 1-phenylpyrazole increase a selectivity hCA IX versus hCA II of our compounds. An in vitro antiproliferative screening has been performed on the breast cancer MDA-MB-231 cell using doxorubicin as cytotoxic agent and in presence of selected CA IX inhibitor. The results shown that the cytotoxic efficiency of doxorubicin in an hypoxic environment, expressed in IC50 value, is restored at 20% level with 1µM CA IX inhibitor.


Asunto(s)
Antígenos de Neoplasias/química , Inhibidores de Anhidrasa Carbónica/síntesis química , Anhidrasas Carbónicas/química , Pirazoles/química , Sulfonamidas/química , Antígenos de Neoplasias/metabolismo , Sitios de Unión , Anhidrasa Carbónica IX , Inhibidores de Anhidrasa Carbónica/metabolismo , Inhibidores de Anhidrasa Carbónica/toxicidad , Anhidrasas Carbónicas/metabolismo , Dominio Catalítico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Cinética , Simulación del Acoplamiento Molecular , Unión Proteica , Relación Estructura-Actividad , Sulfonamidas/metabolismo , Sulfonamidas/toxicidad , Bencenosulfonamidas
12.
J Immunother Cancer ; 11(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37344101

RESUMEN

BACKGROUND: Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan-dioxygenase (TDO) are enzymes catabolizing the essential amino acid tryptophan into kynurenine. Expression of these enzymes is frequently observed in advanced-stage cancers and is associated with poor disease prognosis and immune suppression. Mechanistically, the respective roles of tryptophan shortage and kynurenine production in suppressing immunity remain unclear. Kynurenine was proposed as an endogenous ligand for the aryl hydrocarbon receptor (AHR), which can regulate inflammation and immunity. However, controversy remains regarding the role of AHR in IDO1/TDO-mediated immune suppression, as well as the involvement of kynurenine. In this study, we aimed to clarify the link between IDO1/TDO expression, AHR pathway activation and immune suppression. METHODS: AHR expression and activation was analyzed by RT-qPCR and western blot analysis in cells engineered to express IDO1/TDO, or cultured in medium mimicking tryptophan catabolism by IDO1/TDO. In vitro differentiation of naïve CD4+ T cells into regulatory T cells (Tregs) was compared in T cells isolated from mice bearing different Ahr alleles or a knockout of Ahr, and cultured in medium with or without tryptophan and kynurenine. RESULTS: We confirmed that IDO1/TDO expression activated AHR in HEK-293-E cells, as measured by the induction of AHR target genes. Unexpectedly, AHR was also overexpressed on IDO1/TDO expression. AHR overexpression did not depend on kynurenine but was triggered by tryptophan deprivation. Multiple human tumor cell lines overexpressed AHR on tryptophan deprivation. AHR overexpression was not dependent on general control non-derepressible 2 (GCN2), and strongly sensitized the AHR pathway. As a result, kynurenine and other tryptophan catabolites, which are weak AHR agonists in normal conditions, strongly induced AHR target genes in tryptophan-depleted conditions. Tryptophan depletion also increased kynurenine uptake by increasing SLC7A5 (LAT1) expression in a GCN2-dependent manner. Tryptophan deprivation potentiated Treg differentiation from naïve CD4+ T cells isolated from mice bearing an AHR allele of weak affinity similar to the human AHR. CONCLUSIONS: Tryptophan deprivation sensitizes the AHR pathway by inducing AHR overexpression and increasing cellular kynurenine uptake. As a result, tryptophan catabolites such as kynurenine more potently activate AHR, and Treg differentiation is promoted. Our results propose a molecular explanation for the combined roles of tryptophan deprivation and kynurenine production in mediating IDO1/TDO-induced immune suppression.


Asunto(s)
Quinurenina , Triptófano , Humanos , Ratones , Animales , Quinurenina/metabolismo , Linfocitos T Reguladores/metabolismo , Receptores de Hidrocarburo de Aril/genética , Células HEK293
13.
Bioorg Med Chem ; 20(1): 69-85, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22177405

RESUMEN

We have made a novel series of pyrazolo[1,5-a]pyridines as PI3 kinase inhibitors, and demonstrated their selectivity for the p110α isoform over the other Class Ia PI3 kinases. We investigated the SAR around the pyrazolo[1,5-a]pyridine ring system, and found compound 5x to be a particularly potent example (p110α IC(50) 0.9nM). This compound inhibits cell proliferation and phosphorylation of Akt/PKB, a downstream marker of PI3 kinase activity, and showed in vivo activity in an HCT-116 human xenograft model.


Asunto(s)
Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/química , Pirazoles/química , Piridinas/química , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Sitios de Unión , Línea Celular Tumoral , Simulación por Computador , Evaluación Preclínica de Medicamentos , Activación Enzimática/efectos de los fármacos , Humanos , Ratones , Neoplasias/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piridinas/síntesis química , Piridinas/farmacología , Trasplante Heterólogo
14.
Bioorg Med Chem ; 20(1): 58-68, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22177407

RESUMEN

Structure-activity relationship studies of the pyrazolo[1,5-a]pyridine class of PI3 kinase inhibitors show that substitution off the hydrazone nitrogen and replacement of the sulfonyl both gave a loss of p110α selectivity, with the exception of an N-hydroxyethyl analogue. Limited substitutions were tolerated around the phenyl ring; in particular the 2,5-substitution pattern was important for PI3 kinase activity. The N-hydroxyethyl compound also showed good inhibition of cell proliferation and inhibition of phosphorylation of Akt/PKB, a downstream marker of PI3 kinase activity. It had suitable pharmacokinetics for evaluation in vivo, and showed tumour growth inhibition in two human tumour cell lines in xenograft studies. This work has provided suggestions for the design of more soluble analogues.


Asunto(s)
Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/química , Pirazoles/química , Piridinas/química , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Sitios de Unión , Línea Celular Tumoral , Simulación por Computador , Humanos , Ratones , Neoplasias/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piridinas/síntesis química , Piridinas/farmacocinética , Relación Estructura-Actividad , Trasplante Heterólogo
15.
Int J Pharm ; 624: 122041, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35868479

RESUMEN

Targeting enzymes involved in tumor metabolism is a promising way to tackle cancer progression. The inhibition of carnitine palmitoyltransferase 1 (CPT1) by etomoxir (Eto) efficiently slows down the growth of various cancers. Unfortunately, the clinical use of this drug was abandoned because of hepatotoxic effects. We report the development of pH-sensitive peptide (pHLIP)-drug conjugate to deliver Eto selectively to cancer cells exposed to acidic microenvironmental conditions. A newly designed sequence for the pHLIP peptide, named pHLIPd, was compared with a previously published reference pHLIP peptide, named pHLIPr. We showed that the conjugate between pHLIPd and Eto has a better pH-dependent insertion and structuration than the pHLIPr-based conjugate inside POPC vesicles. We observed antiproliferative effects when applied on acid-adapted cancer cells, reaching a larger inhibitory activity than Eto alone. In conclusion, this study brings the first evidence that pHLIP-based conjugates with a CPT1 inhibitor has the potential to specifically target the tumor acidic compartment and exert anticancer effects while sparing healthy tissues.


Asunto(s)
Acidosis , Neoplasias , Carnitina O-Palmitoiltransferasa , Compuestos Epoxi , Humanos , Concentración de Iones de Hidrógeno , Neoplasias/tratamiento farmacológico , Péptidos/farmacología
16.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 4): 418-424, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35492280

RESUMEN

Recently, inter-est in the isosteric replacement of a nitro-gen atom to selenium, sulfur or oxygen atoms has been highlighted in the design of potential inhibitors for cancer research. In this context, the structures of 5-(1H-indol-3-yl)-2,1,3-benzotriazole derivatives [5-(1H-indol-3-yl)-2,1,3-benzo-thia-diazole (bS, C14H9N3S) and 5-(1H-indol-3-yl)-2,1,3-benzoxa-diazole (bO, C14H9N3O)], as well as a synthesis inter-mediate of the selenated bioisostere [5-[1-(benzensulfon-yl)-1H-indol-3-yl]-2,1,3-benzoselena-diazole (p-bSe, C20H13N3O2SSe)] were determined using single-crystal X-ray diffraction (SCXRD) analyses. Despite being analogues, different crystal packing, torsion angles and supra-molecular features were observed, depending on the substitution of the central atoms of the benzotriazole. In particular, chalcogen inter-actions were described in the case of p-bSe and not in the bS and bO derivatives. An investigation by ab initio computational methods was therefore conducted to understand the effect of the substitution on the ability to form chalcogen bonds and the flexibility of the compounds.

17.
J Cyst Fibros ; 21(3): 407-415, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34489187

RESUMEN

OBJECTIVES: Two CFTR-dependent ß-adrenergic sweat rate tests applying intradermal drug injections were reported to better define diagnosis and efficacy of CFTR-directed therapies. The aim of this work was to develop and test a needle-free image-based test and to provide an accurate analysis of the responses. METHODS: The modified method was conducted by applying two successive iontophoresis sessions using the Macroduct device. Efficiency of drug delivery was tested by evaporimetry. Cholinergically stimulated sweating was evoked by pilocarpine iontophoresis. ß-adrenergically stimulated sweating was obtained by iontophoresis of isoproterenol and aminophylline in the presence of atropine and ascorbic acid. A nonlinear mixed-effects (NLME) approach was applied to model volumes of sweat and subject-specific effects displaying inter- and intra-subject variability. RESULTS: Iontophoresis provided successful transdermal delivery of all drugs, including almost neutral isoproterenol and aminophylline. Pilocarpine was used at a concentration ∼130-times lower than that used in the classical Gibson and Cooke sweat test. Addition of ascorbic acid lowered the pH of the solution, made it stable, prevented isoproterenol degradation and promoted drug iontophoresis. Maximal secretory capacity and kinetic rate of ß-adrenergic responses were blunted in CF. A cutoff of 5.2 minutes for ET50, the time to reach the half maximal secretion, discriminated CF from controls with a 100% sensitivity and specificity. Heterozygous showed an apparently reduced kinetic rate and a preserved secretory capacity. CONCLUSION: We tested a safe, well-tolerated needle-free image-based sweat test potentially applicable in children. Modelling responses by NLME allowed evaluating metrics of CFTR-dependent effects reflecting secretory capacity and kinetic rate.


Asunto(s)
Fibrosis Quística , Sudor , Adrenérgicos/metabolismo , Aminofilina/metabolismo , Ácido Ascórbico/metabolismo , Niño , Cloruros/análisis , Fibrosis Quística/diagnóstico , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , Iontoforesis , Isoproterenol/farmacología , Pilocarpina/metabolismo , Sudor/química
18.
Acta Biomater ; 140: 561-572, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34923097

RESUMEN

Nanoparticle-based oral drug delivery systems have the potential to target inflamed regions in the gastrointestinal tract by specifically accumulating at disrupted colonic epithelium. But, delivery of intact protein drugs at the targeted site is a major challenge due to the harsh gastrointestinal environment and the protective mucus layer. Biocompatible nanoparticles engineered to target the inflamed colonic tissue and efficiently penetrate the mucosal layer can provide a promising approach for orally delivering monoclonal antibodies to treat inflammatory bowel disease. The study aims to develop mucus-penetrating nanoparticles composed of poly(lactic-co-glycolic acid, PLGA) polymers with two different polyethylene glycol (PEG) chain lengths (2 kDa and 5kDa) to encapsulate monoclonal antibody against tumor necrosis factor-α (TNF-α). The impact of different PEG chain lengths on the efficacy of the nanosystems was evaluated in vitro, ex vivo, and in vivo. Both PLGA-PEG2k and PLGA-PEG5k nanoparticles successfully encapsulated the antibody and significantly reduced TNF-α secretion from activated macrophages and intestinal epithelial cells. However, only antibody-loaded PLGA-PEG2k nanoparticles were able to alleviate the experimental acute colitis in mice demonstrated by improved colon weight/length ratio, histological score, and reduced tissue-associated myeloperoxidase activity and expression of proinflammatory cytokine TNF-α levels compared with the control group. The results suggest that despite having no significant differences in the in vitro cell-based assays, PEG chain length has a significant impact on the in vivo performance of the mucus penetrating nanoparticles. Overall, PLGA-PEG2k nanoparticles were presented as a promising oral delivery system for targeted antibody delivery to treat inflammatory bowel disease. STATEMENT OF SIGNIFICANCE: There is an unmet therapeutic need for oral drug delivery systems for safe and effective antibody therapy of inflammatory bowel disease. Therefore, we have developed PEGylated PLGA-based nanoparticulate drug delivery systems for oral targeted delivery of anti-TNF-α antibody as a potential alternative treatment strategy. The PEG chain length did not affect encapsulation efficiency or interaction with mucin in vitro but resulted in differences in in vitro release profile and in vivo efficacy study. We demonstrated the superiority of anti-TNF-α mAb-PLGA-PEG2k over mAb-PLGA-PEG5k nanoparticles to effectively exhibit anti-inflammatory responses in an acute murine colitis model. These nanoparticle-based formulations may be adjusted to encapsulate other drugs that could be applied to a number of disorders at different mucosal surfaces.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Nanopartículas , Animales , Colitis/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Ratones , Sistema de Administración de Fármacos con Nanopartículas , Polietilenglicoles/metabolismo , Inhibidores del Factor de Necrosis Tumoral
19.
Eur J Med Chem ; 230: 114102, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35074589

RESUMEN

Lactate dehydrogenases (LDHs) are tetrameric enzymes of therapeutic relevance for cancer therapy due to their important implications in cancer cell metabolism. LDH active site inhibition suffers from different drawbacks due to several features such as high cellular concentration and a shared active site among the dehydrogenase family. Conversely, targeting the LDH oligomeric state is an exciting strategy that could provide a suitable alternative to active-site inhibition. In the present study, we developed a biophysical screening cascade to probe the LDHs tetrameric interface. Using nanoscale differential fluorimetry (nanoDSF) as a primary screening method, we identified a series of hits that destabilize the tetrameric protein. From this primary screening, we validated selected hits using saturation transfer difference nuclear magnetic resonance (STD NMR) and microscale thermophoresis (MST) as a combination of orthogonal biophysical techniques. Finally, we characterized the validated hits and demonstrated that they specifically interact at the tetrameric interface of LDH-1 and LDH-5 and can inhibit the LDH tetramerization process. Overall, this work provides a convenient method for screening ligands at the LDH tetrameric interface and has identified promising hits suitable for further optimization. We believe that this biophysical screening cascade, especially the use of (nano)DSF, could be extended to other homomeric proteins.


Asunto(s)
Lactato Deshidrogenasas , Fluorometría , Lactato Deshidrogenasas/antagonistas & inhibidores , Ligandos , Espectroscopía de Resonancia Magnética
20.
Biochem Pharmacol ; 204: 115239, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36075462

RESUMEN

Ferroptosis, first coined in 2012, is an iron-dependent regulated cell death (RCD) characterized by the accumulation of lipid peroxides to toxic levels. This mechanism is currently being evaluated as a target for a variety of diseases offering new opportunities for drug design and development. Recent reports uncovered acyl-CoA synthetase long-chain 4 (ACSL4) as a critical contributor to ferroptosis execution. Therefore, ACSL4 inhibitors are emerging as attractive anti-ferroptotic agents. Herein, we developed a robust screening cascade with orthogonal biophysical and biochemical techniques to identify original human ACSL4 inhibitors. By screening an FDA-approved drug library, we were able to identify and validate new inhibitors with micromolar-range activities against ACSL4. With an IC50 of 280 nM against hACSL4, antifungal agent sertaconazole is to our knowledge, the most potent ACSL4 inhibitor identified so far. In addition, sertaconazole significantly reduced lipid peroxidation and ferroptosis in human differentiated dopaminergic neurons (Lund human mesencephalic LUHMES cells), demonstrating that it is a valuable chemical tool for further investigating the role of ACSL4 in ferroptosis. This study highlights the phenethyl-imidazole scaffold as a novel and promising starting point for the development of anti-ferroptotic agents targeting ACSL4.


Asunto(s)
Ferroptosis , Antifúngicos/farmacología , Coenzima A , Coenzima A Ligasas/metabolismo , Reposicionamiento de Medicamentos , Humanos , Imidazoles , Hierro , Peróxidos Lipídicos , Tiofenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA