Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
PLoS Biol ; 18(12): e3000621, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33351792

RESUMEN

Neurons extend long axons that require maintenance and are susceptible to degeneration. Long-term integrity of axons depends on intrinsic mechanisms including axonal transport and extrinsic support from adjacent glial cells. The mechanisms of support provided by myelinating oligodendrocytes to underlying axons are only partly understood. Oligodendrocytes release extracellular vesicles (EVs) with properties of exosomes, which upon delivery to neurons improve neuronal viability in vitro. Here, we show that oligodendroglial exosome secretion is impaired in 2 mouse mutants exhibiting secondary axonal degeneration due to oligodendrocyte-specific gene defects. Wild-type oligodendroglial exosomes support neurons by improving the metabolic state and promoting axonal transport in nutrient-deprived neurons. Mutant oligodendrocytes release fewer exosomes, which share a common signature of underrepresented proteins. Notably, mutant exosomes lack the ability to support nutrient-deprived neurons and to promote axonal transport. Together, these findings indicate that glia-to-neuron exosome transfer promotes neuronal long-term maintenance by facilitating axonal transport, providing a novel mechanistic link between myelin diseases and secondary loss of axonal integrity.


Asunto(s)
Transporte Axonal/fisiología , Neuronas/metabolismo , Oligodendroglía/metabolismo , Animales , Transporte Axonal/genética , Axones/fisiología , Exosomas/metabolismo , Exosomas/fisiología , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/fisiología , Femenino , Células HEK293 , Humanos , Mantenimiento , Masculino , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina/metabolismo , Neuroglía , Neuronas/fisiología , Oligodendroglía/fisiología , Transducción de Señal/fisiología
2.
Neurochem Res ; 47(7): 1972-1984, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35357600

RESUMEN

The leukodystrophy Hypomyelination with Brainstem and Spinal cord involvement and Leg spasticity (HBSL) is caused by recessive mutations of the DARS1 gene, which encodes the cytoplasmic aspartyl-tRNA synthetase. HBSL is a spectrum disorder with disease onset usually during early childhood and no available treatment options. Patients display regression of previously acquired motor milestones, spasticity, ataxia, seizures, nystagmus, and intellectual disabilities. Gene-function studies in mice revealed that homozygous Dars1 deletion is embryonically lethal, suggesting that successful modelling of HBSL requires the generation of disease-causing genocopies in mice. In this study, we introduced the pathogenic DARS1 M256L mutation located on exon nine of the murine Dars1 locus. Despite causing severe illness in humans, homozygous Dars1 M256L mice were only mildly affected. To exacerbate HBSL symptoms, we bred Dars1 M256L mice with Dars1-null 'enhancer' mice. The Dars1 M256L/- offspring displayed increased embryonic lethality, severe developmental delay, reduced body weight and size, hydrocephalus, anophthalmia, and vacuolization of the white matter. Remarkably, the Dars1 M256L/- genotype affected energy metabolism and peripheral organs more profoundly than the nervous system and resulted in reduced body fat, increased respiratory exchange ratio, reduced liver steatosis, and reduced hypocellularity of the bone marrow. In summary, homozygous Dars1 M256L and compound heterozygous Dars1 M256L/- mutation genotypes recapitulate some aspects of HBSL and primarily manifest in developmental delay as well as metabolic and peripheral changes. These aspects of the disease might have been overlooked in HBSL patients with severe neurological deficits but could be included in the differential diagnosis of HBSL in the future.


Asunto(s)
Aspartato-ARNt Ligasa , Enfermedades Desmielinizantes , Animales , Aspartato-ARNt Ligasa/genética , Aspartato-ARNt Ligasa/metabolismo , Preescolar , Humanos , Ratones , Mutación , Fenotipo
3.
Neurochem Res ; 45(10): 2527, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32638216

RESUMEN

The original version of this published article, the bottom right hand panels of Figs. 3-6 were labelled as "Isotopomers formed from [1-13C]D-glucose". This is incorrect and should read "Isotopomers formed from [1,2-13C]acetate". This has been corrected by publishing this correction article.

4.
Neurochem Res ; 45(6): 1438-1450, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32424601

RESUMEN

L-Ornithine-L-aspartate (LOLA), a crystalline salt, is used primarily in the management of hepatic encephalopathy. The degree to which it might penetrate the brain, and the effects it might have on metabolism in brain are poorly understood. Here, to investigate the effects of LOLA on brain energy metabolism we incubated brain cortical tissue slices from guinea pig (Cavea porcellus) with the constituent amino acids of LOLA, L-ornithine or L-aspartate, as well as LOLA, in the presence of [1-13C]D-glucose and [1,2-13C]acetate; these labelled substrates are useful indicators of brain metabolic activity. L-Ornithine produced significant "sedative" effects on brain slice metabolism, most likely via conversion of ornithine to GABA via the ornithine aminotransferase pathway, while L-aspartate showed concentration-dependent excitatory effects. The metabolic effects of LOLA reflected a mix of these two different processes and were concentration-dependent. We also investigated the effect of an intraperitoneal bolus injection of L-ornithine, L-aspartate or LOLA on levels of metabolites in kidney, liver and brain cortex and brain stem in mice (C57Bl6J) 1 h later. No significant changes in metabolite levels were seen following the bolus injection of L-aspartate, most likely due to rapid metabolism of aspartate before reaching the target tissue. Brain cortex glutamate was decreased by L-ornithine but no other brain effects were observed with any other compound. Kidney levels of aspartate were increased after injection of L-ornithine and LOLA which may be due to interference by ornithine with the kidney urea cycle. It is likely that without optimising chronic intravenous infusion, LOLA has minimal impact on healthy brain energy metabolism due to systemic clearance and the blood - brain barrier.


Asunto(s)
Ácido Aspártico/metabolismo , Encéfalo/metabolismo , Dipéptidos/metabolismo , Metabolismo Energético/fisiología , Ornitina/metabolismo , Animales , Ácido Aspártico/farmacología , Encéfalo/efectos de los fármacos , Dipéptidos/farmacología , Relación Dosis-Respuesta a Droga , Metabolismo Energético/efectos de los fármacos , Femenino , Cobayas , Masculino , Ratones , Ratones Endogámicos C57BL , Ornitina/farmacología
5.
Acta Neuropathol ; 135(1): 95-113, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29116375

RESUMEN

N-Acetylaspartate (NAA) is the second most abundant organic metabolite in the brain, but its physiological significance remains enigmatic. Toxic NAA accumulation appears to be the key factor for neurological decline in Canavan disease-a fatal neurometabolic disorder caused by deficiency in the NAA-degrading enzyme aspartoacylase. To date clinical outcome of gene replacement therapy for this spongiform leukodystrophy has not met expectations. To identify the target tissue and cells for maximum anticipated treatment benefit, we employed comprehensive phenotyping of novel mouse models to assess cell type-specific consequences of NAA depletion or elevation. We show that NAA-deficiency causes neurological deficits affecting unconscious defensive reactions aimed at protecting the body from external threat. This finding suggests, while NAA reduction is pivotal to treat Canavan disease, abrogating NAA synthesis should be avoided. At the other end of the spectrum, while predicting pathological severity in Canavan disease mice, increased brain NAA levels are not neurotoxic per se. In fact, in transgenic mice overexpressing the NAA synthesising enzyme Nat8l in neurons, supra-physiological NAA levels were uncoupled from neurological deficits. In contrast, elimination of aspartoacylase expression exclusively in oligodendrocytes elicited Canavan disease like pathology. Although conditional aspartoacylase deletion in oligodendrocytes abolished expression in the entire CNS, the remaining aspartoacylase in peripheral organs was sufficient to lower NAA levels, delay disease onset and ameliorate histopathology. However, comparable endpoints of the conditional and complete aspartoacylase knockout indicate that optimal Canavan disease gene replacement therapies should restore aspartoacylase expression in oligodendrocytes. On the basis of these findings we executed an ASPA gene replacement therapy targeting oligodendrocytes in Canavan disease mice resulting in reversal of pre-existing CNS pathology and lasting neurological benefits. This finding signifies the first successful post-symptomatic treatment of a white matter disorder using an adeno-associated virus vector tailored towards oligodendroglial-restricted transgene expression.


Asunto(s)
Ácido Aspártico/análogos & derivados , Encéfalo/metabolismo , Encéfalo/patología , Enfermedad de Canavan/metabolismo , Enfermedad de Canavan/terapia , Acetiltransferasas/metabolismo , Amidohidrolasas/administración & dosificación , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Animales , Ácido Aspártico/metabolismo , Encéfalo/diagnóstico por imagen , Enfermedad de Canavan/patología , Modelos Animales de Enfermedad , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Potenciales Evocados Visuales/fisiología , Femenino , Terapia Genética , Humanos , Masculino , Ratones Transgénicos , Neuronas/metabolismo , Neuronas/patología , Oligodendroglía/metabolismo , Oligodendroglía/patología , Fenotipo , ARN Mensajero/metabolismo
6.
Chemistry ; 24(9): 2173-2181, 2018 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-29227561

RESUMEN

A new aluminium metal-organic framework (MOF), based on the short aliphatic linker molecule mesaconic acid (H2 Mes; methylfumaric acid) is reported. Al-MIL-68-Mes with composition [Al(OH)(O2 C-C3 H4 -CO2 )]⋅n H2 O is obtained after short reaction times of 45 minutes under mild, aqueous synthesis conditions (95 °C). It exhibits a kagome-like framework structure with large hexagonal, and small trigonal channels (diameters of ≈6 and ≈2 Å, respectively) and a specific surface area of SBET ≈1040 m2 g-1 (VMIC =0.42 cm3 g-1 ). A sigmoidal vapour sorption isotherm for water, and uptakes of water and methanol above 30 wt. % were observed. Al-MIL-68-Mes is stable against water ad-/desorption and its thermal stability is 350 °C in air. The proton conductivity for the hydrated MOF showed values up to 1.1×10-5  S cm at 130 °C and 100 % relative humidity, which exceeds the values observed for the non-hydrated compound by up to four orders of magnitude. Using synchrotron radiation the crystallisation of the MOF by in situ PXRD was also studied at temperatures from 80 to 100 °C. Kinetic evaluation revealed that the induction periods and crystallization times vary depending on the synthesis batch, but the rate limiting steps are consistently observed.

7.
Neurobiol Dis ; 97(Pt A): 24-35, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27816769

RESUMEN

BACKGROUND: The recently diagnosed leukodystrophy Hypomyelination with Brain stem and Spinal cord involvement and Leg spasticity (HBSL) is caused by mutations of the cytoplasmic aspartyl-tRNA synthetase geneDARS. The physiological role of DARS in translation is to accurately pair aspartate with its cognate tRNA. Clinically, HBSL subjects show a distinct pattern of hypomyelination and develop progressive leg spasticity, variable cognitive impairment and epilepsy. To elucidate the underlying pathomechanism, we comprehensively assessed endogenous DARS expression in mice. Additionally, aiming at creating the first mammalian HBSL model, we genetically engineered and phenotyped mutant mice with a targetedDarslocus. RESULTS: DARS, although expressed in all organs, shows a distinct expression pattern in the adult brain with little immunoreactivity in macroglia but enrichment in neuronal subpopulations of the hippocampus, cerebellum, and cortex. Within neurons, DARS is mainly located in the cell soma where it co-localizes with other components of the translation machinery. Intriguingly, DARS is also present along neurites and at synapses, where it potentially contributes to local protein synthesis.Dars-null mice are not viable and die before embryonic day 11. Heterozygous mice with only one functionalDarsallele display substantially reduced DARS levels in the brain; yet these mutants show no gross abnormalities, including unchanged motor performance. However, we detected reduced pre-pulse inhibition of the acoustic startle response indicating dysfunction of attentional processing inDars+/-mice. CONCLUSIONS: Our results, for the first time, show an in-depth characterization of the DARS tissue distribution in mice, revealing surprisingly little uniformity across brain regions or between the major neural cell types. The complete loss of DARS function is not tolerated in mice suggesting that the identified HBSL mutations in humans retain some residual enzyme activity. The mild phenotype of heterozygousDars-null carriers indicates that even partial restoration of DARS levels would be therapeutically relevant. Despite the fact that they do not resemble the full spectrum of clinical symptoms, the robust pre-pulse inhibition phenotype ofDars+/-mice will be instrumental for future preclinical therapeutic efficacy studies. In summary, our data is an important contribution to a better understanding of DARS function and HBSL pathology.


Asunto(s)
Aspartato-ARNt Ligasa/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/enzimología , Animales , Aspartato-ARNt Ligasa/genética , Astrocitos/enzimología , Astrocitos/patología , Atención/fisiología , Encéfalo/enzimología , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Proteínas de Caenorhabditis elegans/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Conducta Exploratoria/fisiología , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/fisiología , Neuronas/enzimología , Neuronas/patología , Oligodendroglía/enzimología , Oligodendroglía/patología , Fenotipo , Inhibición Prepulso/fisiología , Reflejo de Sobresalto/fisiología , Médula Espinal/enzimología , Médula Espinal/crecimiento & desarrollo , Médula Espinal/patología , Sinaptosomas/enzimología , Proteína de Unión al GTP ran/metabolismo
9.
Int J Biometeorol ; 61(1): 189-198, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27369974

RESUMEN

Wind speed is reduced above urban areas due to their high aerodynamic roughness. This not only holds for above the urban canopy. The local vertical wind profile is modified. Aerodynamic roughness (both roughness length and displacement height) therefore is relevant for many fields within human biometeorology, e.g. for the identification of ventilation paths, the concentration and dispersion of air pollutants at street level or to simulate wind speed and direction in urban environments and everything depending on them. Roughness, thus, also shows strong influence on human thermal comfort. Currently, roughness parameters are mostly estimated using classifications. However, such classifications only provide limited assessment of roughness in urban areas. In order to calculate spatially resolved roughness on the micro-scale, three different approaches were implemented in the SkyHelios model. For all of them, the urban area is divided into reference areas for each of the obstacles using a voronoi diagram. The three approaches are based on building and [+one of them also on] vegetation (trees and forests) data. They were compared for the city of Stuttgart, Germany. Results show that the approach after Bottema and Mestayer (J Wind Eng Ind Aerodyn 74-76:163-173 1998) on the spatial basis of a voronoi diagram provides the most plausible results.


Asunto(s)
Ciudades , Modelos Teóricos , Viento , Alemania
10.
PLoS Biol ; 11(7): e1001604, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23874151

RESUMEN

Reciprocal interactions between neurons and oligodendrocytes are not only crucial for myelination, but also for long-term survival of axons. Degeneration of axons occurs in several human myelin diseases, however the molecular mechanisms of axon-glia communication maintaining axon integrity are poorly understood. Here, we describe the signal-mediated transfer of exosomes from oligodendrocytes to neurons. These endosome-derived vesicles are secreted by oligodendrocytes and carry specific protein and RNA cargo. We show that activity-dependent release of the neurotransmitter glutamate triggers oligodendroglial exosome secretion mediated by Ca²âº entry through oligodendroglial NMDA and AMPA receptors. In turn, neurons internalize the released exosomes by endocytosis. Injection of oligodendroglia-derived exosomes into the mouse brain results in functional retrieval of exosome cargo in neurons. Supply of cultured neurons with oligodendroglial exosomes improves neuronal viability under conditions of cell stress. These findings indicate that oligodendroglial exosomes participate in a novel mode of bidirectional neuron-glia communication contributing to neuronal integrity.


Asunto(s)
Exosomas/efectos de los fármacos , Neuronas/citología , Neurotransmisores/farmacología , Oligodendroglía/citología , Animales , Comunicación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Ácido Glutámico/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
11.
Int J Biometeorol ; 59(4): 481-6, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25119826

RESUMEN

The effect of weather on sport events is not well studied. It requires special attention if the event is taking place at a time and place with extreme weather situations. For the world soccer championship in Qatar (Doha 2022), human biometeorological analysis has been performed in order to identify the time of the year that is most suitable in terms of thermal comfort for visitors attending the event. The analysis is based on thermal indices like Physiologically Equivalent Temperature (PET). The results show that this kind of event may be not appropriate for visitors, if it is placed during months with extreme conditions. For Doha, this is the period from May to September, when conditions during a large majority of hours of the day cause strong heat stress for the visitors. A more appropriate time would be the months November to February, when thermally comfortable conditions are much more frequent. The methods applied here can quantify the thermal conditions and show limitations and possibilities for specific events and locations.


Asunto(s)
Aclimatación/fisiología , Temperatura Corporal/fisiología , Clima , Fútbol/fisiología , Temperatura , Viaje , Rendimiento Atlético/fisiología , Monitoreo del Ambiente , Humanos , Masculino , Qatar
12.
Adv Mater ; 36(12): e2210050, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36651201

RESUMEN

Several metal-organic frameworks (MOFs) excel in harvesting water from the air or as heat pumps as they show a steep increase in water uptake at 10-30 % relative humidity (RH%). A precise understanding of which structural characteristics govern such behavior is lacking. Herein, CAU-10-H and CAU-10-CH3 are studied with H, CH3 corresponding to the functions grafted to the organic linker. CAU-10-H shows a steep water uptake ≈18 RH% of interest for water harvesting, yet the subtle replacement of H by CH3 in the organic linker drastically changes the water adsorption behavior to less steep water uptake at much higher humidity values. The materials' structural deformation and water ordering during adsorption with in situ sum-frequency generation, in situ X-ray diffraction, and molecular simulations are unraveled. In CAU-10-H, an energetically favorable water cluster is formed in the hydrophobic pore, tethered via H-bonds to the framework µï£¿OH groups, while for CAU-10-CH3, such a favorable cluster cannot form. By relating the findings to the features of water adsorption isotherms of a series of MOFs, it is concluded that favorable water adsorption occurs when sites of intermediate hydrophilicity are present in a hydrophobic structure, and the formation of energetically favorable water clusters is possible.

13.
Front Neurosci ; 17: 1182874, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37274208

RESUMEN

Protein synthesis is a fundamental process that underpins almost every aspect of cellular functioning. Intriguingly, despite their common function, recessive mutations in aminoacyl-tRNA synthetases (ARSs), the family of enzymes that pair tRNA molecules with amino acids prior to translation on the ribosome, cause a diverse range of multi-system disorders that affect specific groups of tissues. Neurological development is impaired in most ARS-associated disorders. In addition to central nervous system defects, diseases caused by recessive mutations in cytosolic ARSs commonly affect the liver and lungs. Patients with biallelic mutations in mitochondrial ARSs often present with encephalopathies, with variable involvement of peripheral systems. Many of these disorders cause severe disability, and as understanding of their pathogenesis is currently limited, there are no effective treatments available. To address this, accurate in vivo models for most of the recessive ARS diseases are urgently needed. Here, we discuss approaches that have been taken to model recessive ARS diseases in vivo, highlighting some of the challenges that have arisen in this process, as well as key results obtained from these models. Further development and refinement of animal models is essential to facilitate a better understanding of the pathophysiology underlying recessive ARS diseases, and ultimately to enable development and testing of effective therapies.

14.
Front Neurosci ; 17: 1182845, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37274211

RESUMEN

Aminoacyl-tRNA synthetases (ARSs) play an essential role in protein synthesis, being responsible for ligating tRNA molecules to their corresponding amino acids in a reaction known as 'tRNA aminoacylation'. Separate ARSs carry out the aminoacylation reaction in the cytosol and in mitochondria, and mutations in almost all ARS genes cause pathophysiology most evident in the nervous system. Dominant mutations in multiple cytosolic ARSs have been linked to forms of peripheral neuropathy including Charcot-Marie-Tooth disease, distal hereditary motor neuropathy, and spinal muscular atrophy. This review provides an overview of approaches that have been employed to model each of these diseases in vivo, followed by a discussion of the existing animal models of dominant ARS disorders and key mechanistic insights that they have provided. In summary, ARS disease models have demonstrated that loss of canonical ARS function alone cannot fully account for the observed disease phenotypes, and that pathogenic ARS variants cause developmental defects within the peripheral nervous system, despite a typically later onset of disease in humans. In addition, aberrant interactions between mutant ARSs and other proteins have been shown to contribute to the disease phenotypes. These findings provide a strong foundation for future research into this group of diseases, providing methodological guidance for studies on ARS disorders that currently lack in vivo models, as well as identifying candidate therapeutic targets.

15.
Front Mol Neurosci ; 15: 1061257, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36568275

RESUMEN

The leukodystrophy Canavan disease is a fatal white matter disorder caused by loss-of-function mutations of the aspartoacylase-encoding ASPA gene. There are no effective treatments available and experimental gene therapy trials have failed to provide sufficient amelioration from Canavan disease symptoms. Preclinical studies suggest that Canavan disease-like pathology can be addressed by either ASPA gene replacement therapy or by lowering the expression of the N-acetyl-L-aspartate synthesizing enzyme NAT8L. Both approaches individually prevent or even reverse pathological aspects in Canavan disease mice. Here, we combined both strategies and assessed whether intracranial adeno-associated virus-mediated gene delivery to a Canavan disease mouse model at 12 weeks allows for reversal of existing pathology. This was enabled by a single vector dual-function approach. In vitro and in vivo biopotency assessment revealed significant knockdown of neuronal Nat8l paired with robust ectopic aspartoacylase expression. Following nomination of the most efficient cassette designs, we performed proof-of-concept studies in post-symptomatic Aspa-null mice. Late-stage gene therapy resulted in a decrease of brain vacuoles and long-term reversal of all pathological hallmarks, including loss of body weight, locomotor impairments, elevated N-acetyl-L-aspartate levels, astrogliosis, and demyelination. These data suggest feasibility of a dual-function vector combination therapy, directed at replacing aspartoacylase with concomitantly suppressing N-acetyl-L-aspartate production, which holds potential to permanently alleviate Canavan disease symptoms and expands the therapeutic window towards a treatment option for adult subjects.

16.
J Am Chem Soc ; 132(50): 17690-1, 2010 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-21114319

RESUMEN

Neutral palladium(II) phosphinesulfonato polymerization catalysts were found to be stable toward carboxylic acid moieties and to enable direct linear copolymerization of ethylene with acrylic acid.

17.
Front Cell Neurosci ; 14: 626610, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33574740

RESUMEN

Aminoacyl-tRNA synthetases (ARSs) accurately charge tRNAs with their respective amino acids. As such, they are vital for the initiation of cytosolic and mitochondrial protein translation. These enzymes have become increasingly scrutinized in recent years for their role in neurodegenerative disorders caused by the mutations of ARS-encoding genes. This review focuses on two such genes-DARS1 and DARS2-which encode cytosolic and mitochondrial aspartyl-tRNA synthetases, and the clinical conditions associated with mutations of these genes. We also describe attempts made at modeling these conditions in mice, which have both yielded important mechanistic insights. Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL) is a disease caused by a range of mutations in the DARS2 gene, initially identified in 2003. Ten years later, hypomyelination with brainstem and spinal cord involvement and leg spasticity (HBSL), caused by mutations of cytosolic DARS1, was discovered. Multiple parallels have been drawn between the two conditions. The Magnetic Resonance Imaging (MRI) patterns are strikingly similar, but still set these two conditions apart from other leukodystrophies. Clinically, both conditions are characterized by lower limb spasticity, often associated with other pyramidal signs. However, perhaps due to earlier detection, a wider range of symptoms, including peripheral neuropathy, as well as visual and hearing changes have been described in LBSL patients. Both HBSL and LBSL are spectrum disorders lacking genotype to phenotype correlation. While the fatal phenotype of Dars1 or Dars2 single gene deletion mouse mutants revealed that the two enzymes lack functional redundancy, further pursuit of disease modeling are required to shed light onto the underlying disease mechanism, and enable examination of experimental treatments, including gene therapies.

18.
Front Cell Neurosci ; 14: 625879, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33551752

RESUMEN

Hypomyelination with brain stem and spinal cord involvement and leg spasticity (HBSL) is a leukodystrophy caused by missense mutations of the aspartyl-tRNA synthetase-encoding gene DARS1. The clinical picture includes the regression of acquired motor milestones, spasticity, ataxia, seizures, nystagmus, and intellectual disabilities. Morphologically, HBSL is characterized by a distinct pattern of hypomyelination in the central nervous system including the anterior brainstem, the cerebellar peduncles and the supratentorial white matter as well as the dorsal columns and the lateral corticospinal tracts of the spinal cord. Adequate HBSL animal models are lacking. Dars1 knockout mice are embryonic lethal precluding examination of the etiology. To address this, we introduced the HBSL-causing Dars1 D367Y point mutation into the mouse genome. Surprisingly, mice carrying this mutation homozygously were phenotypically normal. As hypomorphic mutations are more severe in trans to a deletion, we crossed Dars1 D367Y/D367Y mice with Dars1-null carriers. The resulting Dars1 D367Y/- offspring displayed a strong developmental delay compared to control Dars1 D367Y/+ littermates, starting during embryogenesis. Only a small fraction of Dars1 D367Y/- mice were born, and half of these mice died with hydrocephalus during the first 3 weeks of life. Of the few Dars1 D367Y/- mice that were born at term, 25% displayed microphthalmia. Throughout postnatal life, Dars1 D367Y/- mice remained smaller and lighter than their Dars1 D367Y/+ littermates. Despite this early developmental deficit, once they made it through early adolescence Dars1 D367Y/- mice were phenotypically inconspicuous for most of their adult life, until they developed late onset motor deficits as well as vacuolization and demyelination of the spinal cord white matter. Expression levels of the major myelin proteins were reduced in Dars1 D367Y/- mice compared to controls. Taken together, Dars1 D367Y/- mice model aspects of the clinical picture of the corresponding missense mutation in HBSL. This model will enable studies of late onset deficits, which is precluded in Dars1 knockout mice, and can be leveraged to test potential HBSL therapeutics including DARS1 gene replacement therapy.

19.
Chem Commun (Camb) ; 56(67): 9628-9631, 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32696768

RESUMEN

A Fe-MOF was obtained from aqueous solution in high yield under reflux. The water sorption properties were studied by powder X-ray diffraction, volumetric and gravimetric sorption experiments and molecular simulations. The subsequent filling of hydrophobic and hydrophilic pores as well as the stability of the material are demonstrated.

20.
J Extracell Vesicles ; 8(1): 1656042, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31552133

RESUMEN

Recent studies on extracellular RNA raised awareness that extracellular vesicles (EVs) isolated from cultured cells may co-purify RNAs derived from media supplements such as fetal bovine serum (FBS) confounding EV-associated RNA. Defined culture media supplemented with a range of nutrient components provide an alternative to FBS addition and allow EV-collection under full medium conditions avoiding starvation and cell stress during the collection period. However, the potential contribution of serum-free media supplements to EV-RNA contamination has remained elusive and has never been assessed. Here, we report that RNA isolated from EVs harvested from cells under serum-replacement conditions includes miRNA contaminants carried into the sample by defined media components. Subjecting unconditioned, EV-free medium to differential centrifugation followed by reverse transcription quantitative PCR (RT-qPCR) on RNA isolated from the pellet resulted in detection of miRNAs that had been classified as EV-enriched by RNA-seq or RT-qPCR of an isolated EV-fraction. Ribonuclease (RNase-A) and detergent treatment removed most but not all of the contaminating miRNAs. Further analysis of the defined media constituents identified Catalase as a main source of miRNAs co-isolating together with EVs. Hence, miRNA contaminants can be carried into EV-samples even under serum-free harvesting conditions using culture media that are expected to be chemically defined. Formulation of miRNA-free media supplements may provide a solution to collect EVs clean from confounding miRNAs, which however still remains a challenging task. Differential analysis of EVs collected under full medium and supplement-deprived conditions appears to provide a strategy to discriminate confounding and EV-associated RNA. In conclusion, we recommend careful re-evaluation and validation of EV small RNA-seq and RT-qPCR datasets by determining potential medium background.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA