Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Struct Biol ; : 108113, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39079583

RESUMEN

Kainate receptors play an important role in the central nervous system by mediating postsynaptic excitatory neurotransmission and modulating the release of the inhibitory neurotransmitter GABA through a presynaptic mechanism. To date, only three structures of the ligand-binding domain (LBD) of the kainate receptor subunit GluK1 in complex with positive allosteric modulators have been determined by X-ray crystallography, all belonging to class II modulators. Here, we report a high-resolution structure of GluK1-LBD in complex with kainate and BPAM538, which belongs to the full-spanning class III. One BPAM538 molecule binds at the GluK1 dimer interface, thereby occupying two allosteric binding sites simultaneously. BPAM538 stabilizes the active receptor conformation with only minor conformational changes being introduced to the receptor. Using a calcium-sensitive fluorescence-based assay, a 5-fold potentiation of the kainate response (100 µM) was observed in presence of 100 µM BPAM538 at GluK1(Q)b, whereas no potentiation was observed at GluK2(VCQ)a. Using electrophysiology recordings of outside-out patches excised from HEK293 cells, BPAM538 increased the peak response of GluK1(Q)b co-expressed with NETO2 to rapid application of 10 mM L-glutamate with 130 ±â€¯20 %, and decreased desensitization determined as the steady-state/peak response ratio from 23 ±â€¯2 % to 90 ±â€¯4 %. Based on dose-response relationship experiments on GluK1(Q)b the EC50 of BPAM538 was estimated to be 57.5 ±â€¯29.2 µM.

2.
Molecules ; 29(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39065020

RESUMEN

A major limitation preventing the use of surface-enhanced Raman scattering (SERS) in routine analyses is the signal variability due to the heterogeneity of metallic nanoparticles used as SERS substrates. This study aimed to robustly optimise a synthesis process of silver nanoparticles to improve the measured SERS signal repeatability and the protocol synthesis repeatability. The process is inspired by a chemical reduction method associated with microwave irradiation to guarantee better controlled and uniform heating. The innovative Quality by Design strategy was implemented to optimise the different parameters of the process. A preliminary investigation design was firstly carried out to evaluate the influence of four parameters selected by means of an Ishikawa diagram. The critical quality attributes were to maximise the intensity of the SERS response and minimise its variance. The reaction time, temperature and stirring speed are critical process parameters. These were optimised using an I-optimal design. A robust operating zone covering the optimal reaction conditions (3.36 min-130 °C-600 rpm) associated with a probability of success was modelled. Validation of this point confirmed the prediction with intra- and inter-batch variabilities of less than 15%. In conclusion, this study successfully optimised silver nanoparticles by a rapid, low cost and simple technique enhancing the quantitative perspectives of SERS.

3.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36835023

RESUMEN

A series of seventeen 4-chlorocinnamanilides and seventeen 3,4-dichlorocinnamanilides were characterized for their antiplasmodial activity. In vitro screening on a chloroquine-sensitive strain of Plasmodium falciparum 3D7/MRA-102 highlighted that 23 compounds possessed IC50 < 30 µM. Typically, 3,4-dichlorocinnamanilides showed a broader range of activity compared to 4-chlorocinnamanilides. (2E)-N-[3,5-bis(trifluoromethyl)phenyl]-3-(3,4-dichlorophenyl)prop-2-en-amide with IC50 = 1.6 µM was the most effective agent, while the other eight most active derivatives showed IC50 in the range from 1.8 to 4.6 µM. A good correlation between the experimental logk and the estimated clogP was recorded for the whole ensemble of the lipophilicity generators. Moreover, the SAR-mediated similarity assessment of the novel (di)chlorinated N-arylcinnamamides was conducted using the collaborative (hybrid) ligand-based and structure-related protocols. In consequence, an 'averaged' selection-driven interaction pattern was produced based in namely 'pseudo-consensus' 3D pharmacophore mapping. The molecular docking approach was engaged for the most potent antiplasmodial agents in order to gain an insight into the arginase-inhibitor binding mode. The docking study revealed that (di)chlorinated aromatic (C-phenyl) rings are oriented towards the binuclear manganese cluster in the energetically favorable poses of the chloroquine and the most potent arginase inhibitors. Additionally, the water-mediated hydrogen bonds were formed via carbonyl function present in the new N-arylcinnamamides and the fluorine substituent (alone or in trifluoromethyl group) of N-phenyl ring seems to play a key role in forming the halogen bonds.


Asunto(s)
Antimaláricos , Antimaláricos/farmacología , Arginasa/farmacología , Simulación del Acoplamiento Molecular , Cloroquina/farmacología , Plasmodium falciparum , Relación Estructura-Actividad
4.
Molecules ; 28(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37298992

RESUMEN

Malaria is an infectious disease caused by a Plasmodium genus parasite that remains the most widespread parasitosis. The spread of Plasmodium clones that are increasingly resistant to antimalarial molecules is a serious public health problem for underdeveloped countries. Therefore, the search for new therapeutic approaches is necessary. For example, one strategy could consist of studying the redox process involved in the development of the parasite. Regarding potential drug candidates, ellagic acid is widely studied due to its antioxidant and parasite-inhibiting properties. However, its low oral bioavailability remains a concern and has led to pharmacomodulation and the synthesis of new polyphenolic compounds to improve antimalarial activity. This work aimed at investigating the modulatory effect of ellagic acid and its analogues on the redox activity of neutrophils and myeloperoxidase involved in malaria. Overall, the compounds show an inhibitory effect on free radicals as well as on the enzyme horseradish peroxidase- and myeloperoxidase (HRP/MPO)-catalyzed oxidation of substrates (L-012 and Amplex Red). Similar results are obtained with reactive oxygen species (ROS) produced by phorbol 12-mystate acetate (PMA)-activated neutrophils. The efficiency of ellagic acid analogues will be discussed in terms of structure-activity relationships.


Asunto(s)
Antimaláricos , Malaria , Plasmodium , Humanos , Antioxidantes/química , Antimaláricos/farmacología , Especies Reactivas de Oxígeno/farmacología , Neutrófilos , Ácido Elágico/farmacología , Peroxidasa/metabolismo , Oxidación-Reducción , Plasmodium/metabolismo
5.
Molecules ; 27(22)2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36431900

RESUMEN

Due to the urgent need of innovation in the antimalarial therapeutic arsenal, a series of thirty-seven ring-substituted N-arylcinnamanilides prepared by microwave-assisted synthesis were subjected to primary screening against the chloroquine-sensitive strain of P. falciparum 3D7/MRA-102. The lipophilicity of all compounds was experimentally determined as the logarithm of the capacity factor k, and these data were subsequently used in the discussion of structure-activity relationships. Among the screened compounds, fourteen derivatives exhibited IC50 from 0.58 to 31 µM, whereas (2E)-N-(4-bromo-2-chlorophenyl)-3-phenylprop-2-enamide (24) was the most effective agent (IC50 = 0.58 µM). In addition, (2E)-N-[2,6-dibromo-4-(trifluoromethyl)- phenyl]-3-phenylprop-2-enamide (36), (2E)-N-[4-nitro-3-(trifluoromethyl)phenyl]-3-phenylprop- 2-enamide (18), (2E)-N-(2-bromo-5-fluorophenyl)-3-phenylprop-2-enamide (23), and (2E)-3-phenyl-N-(3,4,5-trichlorophenyl)prop-2-enamide (33) demonstrated efficacy in the IC50 range from 2.0 to 4.3 µM, comparable to the clinically used standard chloroquine. The results of a cell viability screening performed using THP1-Blue™ NF-κB cells showed that none of these highly active compounds displayed any significant cytotoxic effect up to 20 µM, which makes them promising Plasmodium selective substances for further investigations.


Asunto(s)
Antimaláricos , Antagonistas del Ácido Fólico , Malaria Falciparum , Humanos , Antimaláricos/farmacología , Cloroquina/farmacología , Relación Estructura-Actividad
6.
Arch Pharm (Weinheim) ; 354(11): e2100190, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34346088

RESUMEN

With more than 200 million cases and 400,000 related deaths, malaria remains one of the deadliest infectious diseases of 2021. Unfortunately, despite the availability of efficient treatments, we have observed an increase in people infected with malaria since 2015 (from 211 million in 2015 to 229 million in 2019). This trend could partially be due to the development of resistance to all the current drugs. Therefore, there is an urgent need for new alternatives. We have, thus, selected common natural scaffolds, polyhydroxybenzoic acids, and synthesized a library of derivatives to better understand the structure-activity relationships explaining their antiplasmodial effect. Only gallic acid derivatives showed a noticeable potential for further developments. Indeed, they showed a selective inhibitory effect on Plasmodium (IC50 ~20 µM, SI > 5) often associated with interesting water solubility. Moreover, this has confirmed the critical importance of free phenolic functions (pyrogallol moiety) for the antimalarial effect. Methyl 4-benzoxy-3,5-dihydroxybenzoate (39) has, for the first time, been recognized as a potential lead for future research because of its marked inhibitory activity against Plasmodium falciparum and its significant hydrosolubility (3.72 mM).


Asunto(s)
Antimaláricos/farmacología , Hidroxibenzoatos/farmacología , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/síntesis química , Antimaláricos/química , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hidroxibenzoatos/síntesis química , Hidroxibenzoatos/química , Concentración 50 Inhibidora , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Relación Estructura-Actividad
7.
Mol Pharmacol ; 91(6): 576-585, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28360094

RESUMEN

Kainate receptors (KARs) consist of a class of ionotropic glutamate receptors, which exert diverse pre- and postsynaptic functions through complex signaling regulating the activity of neural circuits. Whereas numerous small-molecule positive allosteric modulators of the ligand-binding domain of (S)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propanoic acid (AMPA) receptors have been reported, no such ligands are available for KARs. In this study, we investigated the ability of three benzothiadiazine-based modulators to potentiate glutamate-evoked currents at recombinantly expressed KARs. 4-cyclopropyl-7-fluoro-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide (BPAM344) potentiated glutamate-evoked currents of GluK2a 21-fold at the highest concentration tested (200 µM), with an EC50 of 79 µM. BPAM344 markedly decreased desensitization kinetics (from 5.5 to 775 ms), whereas it only had a minor effect on deactivation kinetics. 4-cyclopropyl-7-hydroxy-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide (BPAM521) potentiated the recorded peak current amplitude of GluK2a 12-fold at a concentration of 300 µM with an EC50 value of 159 µM, whereas no potentiation of the glutamate-evoked response was observed for 7-chloro-4-(2-fluoroethyl)-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide (BPAM121) at the highest concentration of modulator tested (300 µM). BPAM344 (100 µM) also potentiated the peak current amplitude of KAR subunits GluK3a (59-fold), GluK2a (15-fold), GluK1b (5-fold), as well as the AMPA receptor subunit GluA1i (5-fold). X-ray structures of the three modulators in the GluK1 ligand-binding domain were determined, locating two modulator-binding sites at the GluK1 dimer interface. In conclusion, this study may enable the design of new positive allosteric modulators selective for KARs, which will be of great interest for further investigation of the function of KARs in vivo and may prove useful for pharmacologically controlling the activity of neuronal networks.


Asunto(s)
Agonistas de Aminoácidos Excitadores/química , Agonistas de Aminoácidos Excitadores/metabolismo , Receptores de Ácido Kaínico/química , Receptores de Ácido Kaínico/metabolismo , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Estructura Secundaria de Proteína , Ratas , Receptores de Ácido Kaínico/agonistas , Relación Estructura-Actividad , Difracción de Rayos X
8.
Biophys J ; 110(11): 2397-2406, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27276258

RESUMEN

The 1,2,4-benzothiadiazine 1,1-dioxide type of positive allosteric modulators of the ionotropic glutamate receptor A2 (GluA2) are promising lead compounds for the treatment of cognitive disorders, e.g., Alzheimer's disease. The modulators bind in a cleft formed by the interface of two neighboring ligand binding domains and act by stabilizing the agonist-bound open-channel conformation. The driving forces behind the binding of these modulators can be significantly altered with only minor substitutions to the parent molecules. In this study, we show that changing the 7-fluorine substituent of modulators BPAM97 (2) and BPAM344 (3) into a hydroxyl group (BPAM557 (4) and BPAM521 (5), respectively), leads to a more favorable binding enthalpy (ΔH, kcal/mol) from -4.9 (2) and -7.5 (3) to -6.2 (4) and -14.5 (5), but also a less favorable binding entropy (-TΔS, kcal/mol) from -2.3 (2) and -1.3 (3) to -0.5 (4) and 4.8 (5). Thus, the dissociation constants (Kd, µM) of 4 (11.2) and 5 (0.16) are similar to those of 2 (5.6) and 3 (0.35). Functionally, 4 and 5 potentiated responses of 10 µM L-glutamate at homomeric rat GluA2(Q)i receptors with EC50 values of 67.3 and 2.45 µM, respectively. The binding mode of 5 was examined with x-ray crystallography, showing that the only change compared to that of earlier compounds was the orientation of Ser-497 pointing toward the hydroxyl group of 5. The favorable enthalpy can be explained by the formation of a hydrogen bond from the side-chain hydroxyl group of Ser-497 to the hydroxyl group of 5, whereas the unfavorable entropy might be due to desolvation effects combined with a conformational restriction of Ser-497 and 5. In summary, this study shows a remarkable example of enthalpy-entropy compensation in drug development accompanied with a likely explanation of the underlying structural mechanism.


Asunto(s)
Fármacos actuantes sobre Aminoácidos Excitadores/química , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Receptores AMPA/metabolismo , Animales , Benzotiadiazinas/química , Benzotiadiazinas/farmacología , Calorimetría , Simulación por Computador , Cristalografía por Rayos X , Óxidos S-Cíclicos/síntesis química , Óxidos S-Cíclicos/química , Óxidos S-Cíclicos/farmacología , Descubrimiento de Drogas , Entropía , Fármacos actuantes sobre Aminoácidos Excitadores/síntesis química , Ácido Glutámico/metabolismo , Ácido Glutámico/farmacología , Modelos Moleculares , Estructura Molecular , Oocitos , Unión Proteica , Multimerización de Proteína , Ratas , Receptores AMPA/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tiazinas/síntesis química , Tiazinas/química , Tiazinas/farmacología , Xenopus
9.
J Chem Inf Model ; 54(12): 3404-16, 2014 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-25420075

RESUMEN

Positive allosteric modulation of the ionotropic glutamate receptor GluA2 presents a potential treatment of cognitive disorders, for example, Alzheimer's disease. In the present study, we describe the synthesis, pharmacology, and thermodynamic studies of a series of monofluoro-substituted 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides. Measurements of ligand binding by isothermal titration calorimetry (ITC) showed similar binding affinities for the modulator series at the GluA2 LBD but differences in the thermodynamic driving forces. Binding of 5c (7-F) and 6 (no-F) is enthalpy driven, and 5a (5-F) and 5b (6-F) are entropy driven. For 5d (8-F), both quantities were equal in size. Thermodynamic integration (TI) and one-step perturbation (OSP) were used to calculate the relative binding affinity of the modulators. The OSP calculations had a higher predictive power than those from TI, and combined with the shorter total simulation time, we found the OSP method to be more effective for this setup. Furthermore, from the molecular dynamics simulations, we extracted the enthalpies and entropies, and along with the ITC data, this suggested that the differences in binding free energies are largely explained by the direct ligand-surrounding enthalpies. Furthermore, we used the OSP setup to predict binding affinities for a series of polysubstituted fluorine compounds and monosubstituted methyl compounds and used these predictions to characterize the modulator binding pocket for this scaffold of positive allosteric modulators.


Asunto(s)
Benzotiadiazinas/metabolismo , Benzotiadiazinas/farmacología , Entropía , Simulación de Dinámica Molecular , Receptores AMPA/química , Receptores AMPA/metabolismo , Regulación Alostérica/efectos de los fármacos , Benzotiadiazinas/química , Ligandos , Unión Proteica , Estructura Terciaria de Proteína
10.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 7): 767-770, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38974164

RESUMEN

In the title compound, C14H14O4, the dihedral angle between the coumarin ring system (r.m.s deviation = 0.016 Å) and the penta-noate ring is 36.26 (8)°. A short intra-molecular C-H⋯O contact of 2.40 Šis observed. Hirshfeld surface analysis reveals that 46.1% of the inter-molecular inter-actions are from H⋯H contacts, 28.6% are from H⋯O/O⋯H contacts and 14.7% are from H⋯C/C⋯H.

11.
FEBS Lett ; 598(7): 743-757, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38369668

RESUMEN

Kainate receptors belong to the family of ionotropic glutamate receptors and contribute to the majority of fast excitatory neurotransmission. Consequently, they also play a role in brain diseases. Therefore, understanding how these receptors can be modulated is of importance. Our study provides a crystal structure of the dimeric ligand-binding domain of the kainate receptor GluK2 in complex with L-glutamate and the small-molecule positive allosteric modulator, BPAM344, in an active-like conformation. The role of Thr535 and Gln786 in modulating GluK2 by BPAM344 was investigated using a calcium-sensitive fluorescence-based assay on transiently transfected cells expressing GluK2 and mutants hereof. This study may aid in the design of compounds targeting kainate receptors, expanding their potential as targets for the treatment of brain diseases.


Asunto(s)
Encefalopatías , Óxidos S-Cíclicos , Ácido Glutámico , Tiazinas , Humanos , Sitios de Unión , Ligandos , Receptores de Ácido Kaínico/genética , Receptores de Ácido Kaínico/química , Receptores de Ácido Kaínico/metabolismo
12.
FEBS J ; 291(7): 1506-1529, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38145505

RESUMEN

The kainate receptors GluK1-3 (glutamate receptor ionotropic, kainate receptors 1-3) belong to the family of ionotropic glutamate receptors and are essential for fast excitatory neurotransmission in the brain, and are associated with neurological and psychiatric diseases. How these receptors can be modulated by small-molecule agents is not well understood, especially for GluK3. We show that the positive allosteric modulator BPAM344 can be used to establish robust calcium-sensitive fluorescence-based assays to test agonists, antagonists, and positive allosteric modulators of GluK1-3. The half-maximal effective concentration (EC50) of BPAM344 for potentiating the response of 100 µm kainate was determined to be 26.3 µm for GluK1, 75.4 µm for GluK2, and 639 µm for GluK3. Domoate was found to be a potent agonist for GluK1 and GluK2, with an EC50 of 0.77 and 1.33 µm, respectively, upon co-application of 150 µm BPAM344. At GluK3, domoate acts as a very weak agonist or antagonist with a half-maximal inhibitory concentration (IC50) of 14.5 µm, in presence of 500 µm BPAM344 and 100 µm kainate for competition binding. Using H523A-mutated GluK3, we determined the first dimeric structure of the ligand-binding domain by X-ray crystallography, allowing location of BPAM344, as well as zinc-, sodium-, and chloride-ion binding sites at the dimer interface. Molecular dynamics simulations support the stability of the ion sites as well as the involvement of Asp761, Asp790, and Glu797 in the binding of zinc ions. Using electron microscopy, we show that, in presence of glutamate and BPAM344, full-length GluK3 adopts a dimer-of-dimers arrangement.


Asunto(s)
Ácido Kaínico , Receptores de Ácido Kaínico , Tiazinas , Receptores de Ácido Kaínico/genética , Receptores de Ácido Kaínico/agonistas , Ácido Kaínico/farmacología , Óxidos S-Cíclicos , Zinc/metabolismo
13.
Eur J Med Chem ; 264: 116036, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38101041

RESUMEN

The synthesis and biological evaluation on AMPA and kainate receptors of new examples of 3,4-dihydro-2H-1,2,4-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxides is described. The introduction of a cyclopropyl chain instead of an ethyl chain at the 4-position of the thiadiazine ring was found to dramatically improve the potentiator activity on AMPA receptors, with compound 32 (BPAM395) expressing in vitro activity on AMPARs (EC2x = 0.24 µM) close to that of the reference 4-cyclopropyl-substituted benzothiadiazine dioxide 10 (BPAM344). Interestingly, the 4-allyl-substituted thienothiadiazine dioxide 27 (BPAM307) emerged as the most promising compound on kainate receptors being a more effective potentiator than the 4-cyclopropyl-substituted thienothiadiazine dioxide 32 and supporting the view that the 4-allyl substitution of the thiadiazine ring could be more favorable than the 4-cyclopropyl substitution to induce marked activity on kainate receptors versus AMPA receptors. The thieno-analogue 36 (BPAM279) of the clinically tested S18986 (11) was selected for in vivo evaluation in mice as a cognitive enhancer due to a safer profile than 32 after massive per os drug administration. Compound 36 was found to increase the cognition performance in mice at low doses (1 mg/kg) per os suggesting that the compound was well absorbed after oral administration and able to reach the central nervous system. Finally, compound 32 was selected for co-crystallization with the GluA2-LBD (L504Y,N775S) and glutamate to examine the binding mode of thienothiadiazine dioxides within the allosteric binding site of the AMPA receptor. At the allosteric site, this compound established similar interactions as the previously reported BTD-type AMPA receptor modulators.


Asunto(s)
Receptores AMPA , Tiadiazinas , Ratones , Animales , Receptores AMPA/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología , Receptores de Ácido Kaínico/metabolismo , Relación Estructura-Actividad , Tiadiazinas/química , Regulación Alostérica
14.
Planta Med ; 79(5): 334-7, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23457020

RESUMEN

In the course of our investigations on Umutambasha in order to identify its convulsant principles, small quantities of monofluoroacetate were observed in stem bark, leaves, and fruits of this plant newly identified as Dichapetalum michelsonii Hauman. Conclusive evidence for a monofluoroacetate presence came from its isolation from the freeze-dried extract of stem bark. Three free unusual amino acids, named N-methyl-α-alanine, N-methyl-ß-alanine, and 2,7-diaminooctan-1,8-dioic acid, described for the first time in a plant, and known trigonelline were also isolated from the stem bark of D. michelsonii. Structure elucidations were mainly achieved by spectroscopic methods (1H-NMR, 2D-NMR, MS) and by comparison with authentic references. These unusual amino acids were detected by a fast, reliable TLC analysis in all our batches of Umutambasha, suggesting that they could be used for identification purposes in case of human or livestock intoxications. Finally, EEG recordings and behavioural observations performed in mice suggested that the convulsive patterns produced by Umutambasha are the consequence of monofluoroacetate presence in D. michelsonii.


Asunto(s)
Aminoácidos/análisis , Fluoroacetatos/análisis , Magnoliopsida/química , Árboles/química , Animales , Magnoliopsida/toxicidad , Ratones , Rwanda , Pruebas de Toxicidad , Árboles/toxicidad
15.
Biochem J ; 441(1): 173-8, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21895609

RESUMEN

Positive allosteric modulators of the ionotropic glutamate receptor-2 (GluA2) are promising compounds for the treatment of cognitive disorders, e.g. Alzheimer's disease. These modulators bind within the dimer interface of the LBD (ligand-binding domain) and stabilize the agonist-bound conformation slowing receptor desensitization and/or deactivation. In the present study, we employ isothermal titration calorimetry to determine binding affinities and thermodynamic details of binding of modulators of GluA2. A mutant of the LBD of GluA2 (LBD-L483Y-N754S) that forms a stable dimer in solution was used. The potent GluA2 modulator BPAM-97 was used as a reference compound. Evidence that BPAM-97 binds in the same pocket as the well-known GluA2 modulator cyclothiazide was obtained from X-ray structures. The LBD-L483Y-N754S:BPAM-97 complex has a Kd of 5.6 µM (ΔH=-4.9 kcal/mol, -TΔS=-2.3 kcal/mol; where 1 kcal≈4.187 kJ). BPAM-97 was used in a displacement assay to determine a Kd of 0.46 mM (ΔH=-1.2 kcal/mol, -TΔS=-3.3 kcal/mol) for the LBD-L483Y-N754S:IDRA-21 complex. The major structural factors increasing the potency of BPAM-97 over IDRA-21 are the increased van der Waals contacts to, primarily, Met496 in GluA2 imposed by the ethyl substituent of BPAM-97. These results add important information on binding affinities and thermodynamic details, and provide a new tool in the development of drugs against cognitive disorders.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Receptores AMPA/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo , Benzotiadiazinas/farmacología , Calorimetría/métodos , Cristalización , Óxidos S-Cíclicos/farmacología , Diuréticos/farmacología , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Receptores AMPA/genética , Receptores Ionotrópicos de Glutamato/genética , Termodinámica , Tiadiazinas/farmacología
16.
RSC Med Chem ; 14(4): 715-733, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37122550

RESUMEN

Because of the threat of resistant Plasmodium sp., new orally active antimalarials are urgently needed. Inspired by the structure of ellagic acid, exhibiting potent in vivo and in vitro antiplasmodial effects, polyphenolic structures possessing a similar activity-safety profile were synthesized. Indeed, most exhibited a marked in vitro effect (IC50 < 4 µM) on resistant P. falciparum, without any detrimental effects reported during the toxicity assays (hemolysis, cytotoxicity, in vivo). In addition, they possessed a greater hydrosolubility (from 7 µM to 2.7 mM) compared to ellagic acid. Among them, 30 is the most promising for antimalarial purposes since it displayed a significant parasitaemia reduction after oral administration in mice (50 mg kg-1) compared to the orally ineffective ellagic acid. In conclusion, our investigations led to the identification of a promising scaffold, which could bring new insights for malaria treatment.

17.
Eur J Med Chem ; 250: 115221, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36863228

RESUMEN

Positive allosteric modulators of the AMPA receptors (AMPAR PAMs) have been proposed as new drugs for the management of various neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, attention deficit hyperactivity disorder, depression, and schizophrenia. The present study explored new AMPAR PAMs belonging to 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides (BTDs) characterized by the presence of a short alkyl substituent at the 2-position of the heterocycle and by the presence or absence of a methyl group at the 3-position. The introduction of a monofluoromethyl or a difluoromethyl side chain at the 2-position instead of the methyl group was examined. 7-Chloro-4-cyclopropyl-2-fluoromethyl-3,4-dihydro-4H-1,2,4-benzothiadiazine 1,1-dioxide (15e) emerged as the most promising compound associating high in vitro potency on AMPA receptors, a favorable safety profile in vivo and a marked efficacy as a cognitive enhancer after oral administration in mice. Stability studies in aqueous medium suggested that 15e could be considered, at least in part, as a precursor of the corresponding 2-hydroxymethyl-substituted analogue and the known AMPAR modulator 7-chloro-4-cyclopropyl-3,4-dihydro-4H-1,2,4-benzothiadiazine 1,1-dioxide (3) devoid of an alkyl group at the 2-position.


Asunto(s)
Receptores AMPA , Tiadiazinas , Ratones , Animales , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico , Receptores AMPA/metabolismo , Tiadiazinas/farmacología , Tiadiazinas/química , Benzotiadiazinas/farmacología , Benzotiadiazinas/química , Tiazidas , Regulación Alostérica
18.
Curr Med Chem ; 28(30): 6199-6233, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33781183

RESUMEN

BACKGROUND: Despite major advances in the fight against this parasitic disease, malaria remained a major cause of concern in 2021. This infection, mainly due to Plasmodium falciparum, causes more than 200 million cases every year and hundreds of thousands deaths in the developing regions, mostly in Africa. The last statistics show an increase in the cases for the third consecutive year; from 211 million in 2015, it has reached 229 million in 2019. This trend could be partially explained by the appearance of resistance to all the used antimalarials, including artemisinin. Thus, the design of new anti- Plasmodium compounds is an urgent need. For thousands of years, nature has offered humans medicines to cure their diseases or the inspiration for the development of new active principles. It then seems logical to explore the natural sources to find new molecules to treat this parasitosis. METHODS: Therefore, this review reports and analyzes the extracts (plants, bacteria, sponges, fungi) and the corresponding isolated compounds, showing antiplasmodial properties between 2013 and 2019. RESULTS AND CONCLUSION: Nature remains a major source of active compounds. Indeed, 648 molecules from various origins, mostly plants, have been reported for their inhibitory effect on Plasmodium falciparum. Among them, 188 scaffolds were defined as highly active with IC50 ≤ 5 µM, and have been reported here in detail. Moreover, the most active compounds showed a large variety of structures, such as flavonoids, triterpenes, and alkaloids. Therefore, these compounds could be an interesting source of inspiration for medicinal chemists; several of these molecules could become the next leads for malaria treatment.


Asunto(s)
Antimaláricos , Malaria , Plasmodium , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Química Farmacéutica , Humanos , Malaria/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Plasmodium falciparum
19.
ACS Chem Neurosci ; 12(14): 2679-2692, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34242002

RESUMEN

On the basis of the activity of 1,2,4-benzothiadiazine 1,1-dioxides as positive allosteric modulators of AMPA receptors, thiochroman 1,1-dioxides were designed applying the isosteric replacement concept. The new compounds expressed strong modulatory activity on AMPA receptors in vitro, although lower than their corresponding benzothiadiazine analogues. The pharmacokinetic profile of three thiochroman 1,1-dioxides (12a, 12b, 12e) was examined in vivo after oral administration, showing that these compounds freely cross the blood-brain barrier. Structural analysis was achieved using X-ray crystallography after cocrystallization of the racemic compound 12b in complex with the ligand-binding domain of GluA2 (L504Y/N775S). Interestingly, both enantiomers of 12b were found to interact with the GluA2 dimer interface, almost identically to its benzothiadiazine analogue, BPAM344 (4). The interactions of the two enantiomers in the cocrystal were further analyzed (mapping Hirshfeld surfaces and 2D fingerprint) and compared to those of 4. Taken together, these data explain the lower affinity on AMPA receptors of thiochroman 1,1-dioxides compared to their corresponding 1,2,4-benzothiadiazine 1,1-dioxides.


Asunto(s)
Benzotiadiazinas , Receptores AMPA , Regulación Alostérica , Benzotiadiazinas/farmacología , Cristalografía por Rayos X , Receptores AMPA/metabolismo , Estereoisomerismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico
20.
Drug Metab Dispos ; 38(2): 232-40, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19875500

RESUMEN

SUR1-selective ATP-sensitive potassium channel openers (PCOs) have been shown to be of clinical value for the treatment of several metabolic disorders, including type I and type II diabetes, obesity, and hyperinsulinemia. Taking into account these promising therapeutic benefits, different series of 3-alkylamino-4H-1,2,4-benzothiadiazine 1,1-dioxides structurally related to diazoxide were developed. In view of the lead optimization process of the series, knowledge of absorption, distribution, metabolism, excretion, and toxicity parameters, and more particularly the metabolic fate of these compounds, is a fundamental requirement. For such a purpose, two selected promising compounds [7-chloro-3-isopropylamino-4H-1,2,4-benzothiadiazine 1,1-dioxide (BPDZ 73) and 7-chloro-3-(3-pentylamino)-4H-1,2,4-benzothiadiazine 1,1-dioxide (BPDZ 157)] were incubated in the presence of phenobarbital-induced rat liver microsomes to produce expected mammal in vivo phase I metabolites. The resulting major metabolites were then analyzed by both mass spectrometry (MS) and NMR to completely elucidate their chemical structures. The two compounds were also further incubated in the presence of nontreated rats and human microsomes to compare the metabolic profiles. In the present study, the combined use of an exact mass liquid chromatography (LC)/tandem MS platform and an LC/solid-phase extraction/NMR system allowed the clarification of some unresolved structural assessments in the accurate chemical structure elucidation process of the selected PCO drugs. These results greatly help the optimization of the lead compounds.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Benzotiadiazinas/metabolismo , Óxidos S-Cíclicos/metabolismo , Diazóxido/análogos & derivados , Activación del Canal Iónico/efectos de los fármacos , Canales KATP/metabolismo , Moduladores del Transporte de Membrana/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Receptores de Droga/metabolismo , Animales , Cromatografía Líquida de Alta Presión/métodos , Diazóxido/metabolismo , Humanos , Isomerismo , Espectroscopía de Resonancia Magnética/métodos , Masculino , Fase I de la Desintoxicación Metabólica , Microsomas Hepáticos/metabolismo , Fenobarbital/farmacología , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Extracción en Fase Sólida/métodos , Receptores de Sulfonilureas , Espectrometría de Masas en Tándem/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA