Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Blood ; 132(10): 1050-1063, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-29997223

RESUMEN

The microRNA (miRNA) cluster miR-17-92 is oncogenic and represents a valuable therapeutic target in c-MYC (MYC)-driven malignancies. Here, we developed novel LNA gapmeR antisense oligonucleotides (ASOs) to induce ribonuclease H-mediated degradation of MIR17HG primary transcripts and consequently prevent biogenesis of miR-17-92 miRNAs (miR-17-92s). The leading LNA ASO, MIR17PTi, impaired proliferation of several cancer cell lines (n = 48) established from both solid and hematologic tumors by on-target antisense activity, more effectively as compared with miR-17-92 inhibitors. By focusing on multiple myeloma (MM), we found that MIR17PTi triggers apoptosis via impairment of homeostatic MYC/miR-17-92 feed-forward loops (FFLs) in patient-derived MM cells and induces MYC-dependent synthetic lethality. We show that alteration of a BIM-centered FFL is instrumental for MIR17PTi to induce cytotoxicity in MM cells. MIR17PTi exerts strong in vivo antitumor activity in nonobese diabetic severe combined immunodeficient mice bearing clinically relevant models of MM, with advantageous safety and pharmacokinetic profiles in nonhuman primates. Altogether, MIR17PTi is a novel pharmacological tool to be tested in early-phase clinical trials against MM and other MYC-driven malignancies.


Asunto(s)
Apoptosis/efectos de los fármacos , MicroARNs/antagonistas & inhibidores , Mieloma Múltiple/tratamiento farmacológico , Oligonucleótidos/farmacología , ARN Neoplásico/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Ratones , Ratones Endogámicos NOD , Ratones SCID , MicroARNs/genética , MicroARNs/metabolismo , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Oligonucleótidos/genética , ARN Largo no Codificante , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Hepatology ; 51(5): 1735-43, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20432256

RESUMEN

UNLABELLED: MicroRNAs (miRNAs) constitute a new class of regulators of gene expression. Among other actions, miRNAs have been shown to control cell proliferation in development and cancer. However, whether miRNAs regulate hepatocyte proliferation during liver regeneration is unknown. We addressed this question by performing 2/3 partial hepatectomy (2/3 PH) on mice with hepatocyte-specific inactivation of DiGeorge syndrome critical region gene 8 (DGCR8), an essential component of the miRNA processing pathway. Hepatocytes of these mice were miRNA-deficient and exhibited a delay in cell cycle progression involving the G(1) to S phase transition. Examination of livers of wildtype mice after 2/3 PH revealed differential expression of a subset of miRNAs, notably an induction of miR-21 and repression of miR-378. We further discovered that miR-21 directly inhibits Btg2, a cell cycle inhibitor that prevents activation of forkhead box M1 (FoxM1), which is essential for DNA synthesis in hepatocytes after 2/3 PH. In addition, we found that miR-378 directly inhibits ornithine decarboxylase (Odc1), which is known to promote DNA synthesis in hepatocytes after 2/3 PH. CONCLUSION: Our results show that miRNAs are critical regulators of hepatocyte proliferation during liver regeneration. Because these miRNAs and target gene interactions are conserved, our findings may also be relevant to human liver regeneration.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Hepatocitos/citología , Regeneración Hepática/genética , MicroARNs/fisiología , Animales , Hepatectomía , Proteínas Inmediatas-Precoces/antagonistas & inhibidores , Masculino , Ratones , Inhibidores de la Ornitina Descarboxilasa , Proteínas Supresoras de Tumor/antagonistas & inhibidores
3.
Mol Ther Nucleic Acids ; 5(6)2016 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-27327137

RESUMEN

Locked nucleic acid (LNA) oligonucleotides have been successfully used to efficiently inhibit endogenous small noncoding RNAs in vitro and in vivo. We previously demonstrated that the direct miR-221 inhibition by the novel 13-mer LNA-i-miR-221 induces significant antimyeloma activity and upregulates canonical miR-221 targets in vitro and in vivo. To evaluate the LNA-i-miR-221 pharmacokinetics and pharmacodynamics, novel assays for oligonucleotides quantification in NOD.SCID mice and Cynomolgus monkeys (Macaca fascicularis) plasma, urine and tissues were developed. To this aim, a liquid chromatography/mass spectrometry method, after solid-phase extraction, was used for the detection of LNA-i-miR-221 in plasma and urine, while a specific in situ hybridization assay for tissue uptake analysis was designed. Our analysis revealed short half-life, optimal tissue biovailability and minimal urine excretion of LNA-i-miR-221 in mice and monkeys. Up to 3 weeks, LNA-i-miR-221 was still detectable in mice vital organs and in xenografted tumors, together with p27 target upregulation. Importantly, no toxicity in the pilot monkey study was observed. Overall, our findings indicate the suitability of LNA-i-miR-221 for clinical use and we provide here pilot data for safety analysis and further development of LNA-miRNA-based therapeutics for human cancer.

4.
PLoS One ; 9(2): e89659, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24586944

RESUMEN

BACKGROUND & AIM: The miR-221/222 cluster is upregulated in malignant plasma cells from multiple myeloma (MM) patients harboring the t(4;14) translocation. We previously reported that silencing of miR-221/222 by an antisense oligonucleotide induces anti-MM activity and upregulates canonical miR-221/222 targets. The in vivo anti-tumor activity occurred when miR-221/222 inhibitors were delivered directly into MM xenografts. The aim of the present study was to evaluate the anti-MM activity of a novel phosphorothioate modified backbone 13-mer locked nucleic acid (LNA)-Inhibitor-miR-221 (LNA-i-miR-221) specifically designed for systemic delivery. METHODS: In vitro anti-MM activity of LNA-i-miR-221 was evaluated by cell proliferation and BrdU uptake assays. In vivo studies were performed with non-obese diabetic/severe combined immunodeficient (NOD.SCID) mice bearing t(4;14) MM xenografts, which were intraperitoneally or intravenously treated with naked LNA-i-miR-221. RNA extracts from retrieved tumors were analyzed for miR-221 levels and modulation of canonical targets expression. H&E staining and immunohistochemistry were performed on retrieved tumors and mouse vital organs. RESULTS: In vitro, LNA-i-miR-221 exerted strong antagonistic activity against miR-221 and induced upregulation of the endogenous target p27Kip1. It had a marked anti-proliferative effect on t(4;14)-translocated MM cells but not on MM cells not carrying the translocation and not overexpressing miR-221. In vivo, systemic treatment with LNA-i-miR-221 triggered significant anti-tumor activity against t(4;14) MM xenografts; it also induced miR-221 downregulation, upregulated p27Kip1 and reduced Ki-67. No behavioral changes or organ-related toxicity were observed in mice as a consequence of treatments. CONCLUSIONS: LNA-i-miR-221 is a highly stable, effective agent against t(4;14) MM cells, and is suitable for systemic use. These data provide the rationale for the clinical development of LNA-i-miR-221 for the treatment of MM.


Asunto(s)
Antineoplásicos/farmacología , MicroARNs/genética , MicroARNs/farmacología , Mieloma Múltiple/tratamiento farmacológico , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , MicroARNs/antagonistas & inhibidores , MicroARNs/uso terapéutico , Terapia Molecular Dirigida , Mieloma Múltiple/genética , Ensayos Antitumor por Modelo de Xenoinjerto
5.
J Clin Invest ; 122(3): 1097-108, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22326957

RESUMEN

MicroRNA-21 (miR-21) is thought to be an oncomir because it promotes cancer cell proliferation, migration, and survival. miR-21 is also expressed in normal cells, but its physiological role is poorly understood. Recently, it has been found that miR-21 expression is rapidly induced in rodent hepatocytes during liver regeneration after two-thirds partial hepatectomy (2/3 PH). Here, we investigated the function of miR-21 in regenerating mouse hepatocytes by inhibiting it with an antisense oligonucleotide. To maintain normal hepatocyte viability and function, we antagonized the miR-21 surge induced by 2/3 PH while preserving baseline expression. We found that knockdown of miR-21 impaired progression of hepatocytes into S phase of the cell cycle, mainly through a decrease in levels of cyclin D1 protein, but not Ccnd1 mRNA. Mechanistically, we discovered that increased miR-21 expression facilitated cyclin D1 translation in the early phase of liver regeneration by relieving Akt1/mTOR complex 1 signaling (and thus eIF-4F-mediated translation initiation) from suppression by Rhob. Our findings reveal that miR-21 enables rapid hepatocyte proliferation during liver regeneration by accelerating cyclin D1 translation.


Asunto(s)
Ciclina D1/biosíntesis , Regulación de la Expresión Génica , Hígado/metabolismo , MicroARNs/biosíntesis , Animales , Ciclo Celular , División Celular , Citoplasma/metabolismo , Hepatocitos/citología , Regeneración Hepática , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Proteína de Unión al GTP rhoB/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA