Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(11): e2321595121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437551

RESUMEN

Polynyas, areas of open water embedded within sea ice, are a key component of ocean-atmosphere interactions that act as hotspots of sea-ice production, bottom-water formation, and primary productivity. The specific drivers of polynya dynamics remain, however, elusive and coupled climate models struggle to replicate Antarctic polynya activity. Here, we leverage a 44-y time series of Antarctic sea ice to elucidate long-term trends. We identify Antarctic-wide linear increases and a hitherto undescribed cyclical pattern of polynya activity across the Ross Sea region that potentially arises from interactions between the Amundsen Sea Low and Southern Annular Mode. While their specific drivers remain unknown, identifying these emerging patterns augments our capacity to understand the processes that influence sea ice. As we enter a potentially new age of Antarctic sea ice, this advance in understanding will, in turn, lead to more accurate predictions of environmental change, and its implications for Antarctic ecosystems.

2.
Environ Microbiol ; 26(3): e16611, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38519875

RESUMEN

Host-associated microbial communities are shaped by myriad factors ranging from host conditions, environmental conditions and other microbes. Disentangling the ecological impact of each of these factors can be particularly difficult as many variables are correlated. Here, we leveraged earthquake-induced changes in host population structure to assess the influence of population crashes on marine microbial ecosystems. A large (7.8 magnitude) earthquake in New Zealand in 2016 led to widespread coastal uplift of up to ~6 m, sufficient to locally extirpate some intertidal southern bull kelp populations. These uplifted populations are slowly recovering, but remain at much lower densities than at nearby, less-uplifted sites. By comparing the microbial communities of the hosts from disturbed and relatively undisturbed populations using 16S rRNA gene amplicon sequencing, we observed that disturbed host populations supported higher functional, taxonomic and phylogenetic microbial beta diversity than non-disturbed host populations. Our findings shed light on microbiome ecological assembly processes, particularly highlighting that large-scale disturbances that affect host populations can dramatically influence microbiome structure. We suggest that disturbance-induced changes in host density limit the dispersal opportunities of microbes, with host community connectivity declining with the density of host populations.


Asunto(s)
Accidentes de Tránsito , Microbiota , Filogenia , ARN Ribosómico 16S/genética , Microbiota/genética , Nueva Zelanda
3.
Ann Bot ; 133(1): 169-182, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-37804485

RESUMEN

BACKGROUND AND AIMS: Contrasting patterns of host and microbiome biogeography can provide insight into the drivers of microbial community assembly. Distance-decay relationships are a classic biogeographical pattern shaped by interactions between selective and non-selective processes. Joint biogeography of microbiomes and their hosts is of increasing interest owing to the potential for microbiome-facilitated adaptation. METHODS: In this study, we examine the coupled biogeography of the model macroalga Durvillaea and its microbiome using a combination of genotyping by sequencing (host) and 16S rRNA amplicon sequencing (microbiome). Alongside these approaches, we use environmental data to characterize the relationship between the microbiome, the host, and the environment. KEY RESULTS: We show that although the host and microbiome exhibit shared biogeographical structure, these arise from different processes, with host biogeography showing classic signs of geographical distance decay, but with the microbiome showing environmental distance decay. Examination of microbial subcommunities, defined by abundance, revealed that the abundance of microbes is linked to environmental selection. As microbes become less common, the dominant ecological processes shift away from selective processes and towards neutral processes. Contrary to expectations, we found that ecological drift does not promote structuring of the microbiome. CONCLUSIONS: Our results suggest that although host macroalgae exhibit a relatively 'typical' biogeographical pattern of declining similarity with increasing geographical distance, the microbiome is more variable and is shaped primarily by environmental conditions. Our findings suggest that the Baas Becking hypothesis of 'everything is everywhere, the environment selects' might be a useful hypothesis to understand the biogeography of macroalgal microbiomes. As environmental conditions change in response to anthropogenic influences, the processes structuring the microbiome of macroalgae might shift, whereas those governing the host biogeography are less likely to change. As a result, increasingly decoupled host-microbe biogeography might be observed in response to such human influences.


Asunto(s)
Microbiota , Humanos , ARN Ribosómico 16S/genética , Geografía
4.
Mol Ecol ; 31(18): 4818-4831, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35582778

RESUMEN

Large-scale disturbance events have the potential to drastically reshape biodiversity patterns. Notably, newly vacant habitat space cleared by disturbance can be colonized by multiple lineages, which can lead to the evolution of distinct spatial "sectors" of genetic diversity within a species. We test for disturbance-driven sectoring of genetic diversity in intertidal southern bull kelp, Durvillaea antarctica (Chamisso) Hariot, following the high-magnitude 1855 Wairarapa earthquake in New Zealand. Specifically, we use genotyping-by-sequencing (GBS) to analyse fine-scale population structure across the uplift zone and apply machine learning to assess the fit of alternative recolonizaton models. Our analysis reveals that specimens from the uplift zone carry distinctive genomic signatures potentially linked to post-earthquake recolonization processes. Specifically, our analysis identifies two parapatric spatial-genomic sectors of D. antarctica at Turakirae Head, which experienced the most dramatic uplift. Based on phylogeographical modelling, we infer that bull kelp in the Wellington region was probably a source for recolonization of the heavily uplifted Turakirae Head coastline, via two parallel, eastward recolonization events. By identifying multiple parapatric genotypic sectors within a recently recolonized coastal region, the current study provides support for the hypothesis that competing lineage expansions can generate striking spatial structuring of genetic diversity, even in highly dispersive taxa.


Asunto(s)
Terremotos , Kelp , Ecosistema , Genómica , Kelp/genética , Filogeografía
5.
Mol Ecol ; 31(2): 646-657, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34695264

RESUMEN

Major ecological disturbance events can provide opportunities to assess multispecies responses to upheaval. In particular, catastrophic disturbances that regionally extirpate habitat-forming species can potentially influence the genetic diversity of large numbers of codistributed taxa. However, due to the rarity of such disturbance events over ecological timeframes, the genetic dynamics of multispecies recolonization processes have remained little understood. Here, we use single nucleotide polymorphism (SNP) data from multiple coastal species to track the dynamics of cocolonization events in response to ancient earthquake disturbance in southern New Zealand. Specifically, we use a comparative phylogeographic approach to understand the extent to which epifauna (with varying ecological associations with their macroalgal hosts) share comparable spatial and temporal recolonization patterns. Our study reveals concordant disturbance-related phylogeographic breaks in two intertidal macroalgal species along with two associated epibiotic species (a chiton and an isopod). By contrast, two codistributed species, one of which is an epibiotic amphipod and the other a subtidal macroalga, show few, if any, genetic effects of palaeoseismic coastal uplift. Phylogeographic model selection reveals similar post-uplift recolonization routes for the epibiotic chiton and isopod and their macroalgal hosts. Additionally, codemographic analyses support synchronous population expansions of these four phylogeographically similar taxa. Our findings indicate that coastal paleoseismic activity has driven concordant impacts on multiple codistributed species, with concerted recolonization events probably facilitated by macroalgal rafting. These results highlight that high-resolution comparative genomic data can help reconstruct concerted multispecies responses to recent ecological disturbance.


Asunto(s)
Algas Marinas , Ecosistema , Nueva Zelanda , Filogenia , Filogeografía
6.
Nature ; 522(7557): 431-8, 2015 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-26108852

RESUMEN

Antarctic biodiversity is much more extensive, ecologically diverse and biogeographically structured than previously thought. Understanding of how this diversity is distributed in marine and terrestrial systems, the mechanisms underlying its spatial variation, and the significance of the microbiota is growing rapidly. Broadly recognizable drivers of diversity variation include energy availability and historical refugia. The impacts of local human activities and global environmental change nonetheless pose challenges to the current and future understanding of Antarctic biodiversity. Life in the Antarctic and the Southern Ocean is surprisingly rich, and as much at risk from environmental change as it is elsewhere.


Asunto(s)
Organismos Acuáticos/aislamiento & purificación , Biodiversidad , Ecología , Microbiota/fisiología , Animales , Regiones Antárticas , Organismos Acuáticos/genética , Conservación de los Recursos Naturales/tendencias , Actividades Humanas , Microbiota/genética , Océanos y Mares
7.
J Phycol ; 57(5): 1411-1418, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33942304

RESUMEN

Understanding the forces that shape species distributions is increasingly important in a fast-changing world. Although major disturbance events can adversely affect natural populations, they can also present new opportunities, for example by opening up habitat for colonization by other lineages. Following extensive geographic sampling, we use genomic data to infer a range extension following disturbance for an ecologically important intertidal macroalgal species. Specifically, we genotyped 288 southern bull kelp (Durvillaea) plants from 28 localities across central New Zealand. All specimens from the North Island were expected to be D. antarctica, but unexpectedly 10 samples from four sites were identified as D. poha. Extensive sampling from the northern South Island (105 samples at five locations) confirmed the absence of D. poha north of the Kaikoura Peninsula. The North Island specimens of D. poha therefore reveal a biogeographic disjunction, some 150 km northeast of the nearest (South Island) population of this species. Based on strong geographic correspondence between these North Island samples and historic disturbance, we infer that tectonic upheaval, particularly earthquake-generated landslides, likely extirpated local D. antarctica and created an opportunity for a northward range expansion event by D. poha. Close phylogenomic relationships between this new North Island population and South Island samples support a geologically recent northward expansion, rather than a deeper evolutionary origin. These findings indicate the potential of large-scale disturbances to facilitate sudden biogeographic range expansions, and they emphasize the ability of genomic analyses with fine-scale sampling to reveal long-lasting signatures of past disturbance, dispersal, and colonization.


Asunto(s)
Kelp , Phaeophyceae , Evolución Biológica , Ecosistema , Filogenia , Filogeografía
8.
Proc Biol Sci ; 287(1930): 20200712, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32635859

RESUMEN

Theory suggests that catastrophic earth-history events can drive rapid biological evolution, but empirical evidence for such processes is scarce. Destructive geological events such as earthquakes can represent large-scale natural experiments for inferring such evolutionary processes. We capitalized on a major prehistoric (800 yr BP) geological uplift event affecting a southern New Zealand coastline to test for the lasting genomic impacts of disturbance. Genome-wide analyses of three co-distributed keystone kelp taxa revealed that post-earthquake recolonization drove the evolution of novel, large-scale intertidal spatial genetic 'sectors' which are tightly linked to geological fault boundaries. Demographic simulations confirmed that, following widespread extirpation, parallel expansions into newly vacant habitats rapidly restructured genome-wide diversity. Interspecific differences in recolonization mode and tempo reflect differing ecological constraints relating to habitat choice and dispersal capacity among taxa. This study highlights the rapid and enduring evolutionary effects of catastrophic ecosystem disturbance and reveals the key role of range expansion in reshaping spatial genetic patterns.


Asunto(s)
Terremotos , Variación Genética , Animales , Ecosistema , Estudio de Asociación del Genoma Completo , Kelp , Nueva Zelanda
9.
Mol Ecol ; 29(1): 149-159, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31711270

RESUMEN

In species that form dense populations, major disturbance events are expected to increase the chance of establishment for immigrant lineages. Real-time tests of the impact of disturbance on patterns of genetic structure are, however, scarce. Central to testing these concepts is determining the pool of potential immigrants dispersing into a disturbed area. In 2016, a 7.8 magnitude earthquake occurred on the South Island of New Zealand. Affecting approximately 100 km of coastline, this quake caused extensive uplift (several metres high), extirpating many intertidal populations, including keystone intertidal kelp species. Following the uplift, we set out to determine the geographic origins of detached kelp specimens which rafted into the disturbed zone. Specifically, we used genotyping-by-sequencing (GBS) approaches to compare beach-cast southern bull-kelp (Durvillaea antarctica and Durvillaea poha) samples to established populations throughout the species' ranges, and thus infer the geographic origins of potential colonists reaching the disturbed coast. Our findings revealed an ongoing supply of diverse lineages dispersing to the newly uplifted coastline, suggesting potential for establishment of "exotic" lineages following disturbance. Furthermore, we found that some drifting individuals of each species came from far-distant regions, some >1,200 km away. These results show that diverse lineages - in many cases from very distant sources - can compete for new space in the wake of an exceptional disturbance event, illustrating the potential of long-distance dispersal as a key mechanism for reassembly of coastal ecosystems. Furthermore, our findings demonstrate that high-resolution genomic baselines can be used to robustly assign the provenance of dispersing individuals.


Asunto(s)
Genómica , Kelp/genética , Polimorfismo de Nucleótido Simple/genética , Terremotos , Ecología , Ecosistema , Técnicas de Genotipaje , Kelp/fisiología , Nueva Zelanda , Densidad de Población , Movimientos del Agua
10.
J Phycol ; 56(1): 23-36, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31642057

RESUMEN

Long-distance dispersal plays a key role in evolution, facilitating allopatric divergence, range expansions, and species movement in response to environmental change. Even species that seem poorly suited to dispersal can sometimes travel long distances, for example via hitchhiking with other, more intrinsically dispersive species. In marine macroalgae, buoyancy can enable adults-and diverse hitchhikers-to drift long distances, but the evolution and role of this trait are poorly understood. The southern bull-kelp genus Durvillaea includes several non-buoyant and buoyant species, including some that have only recently been recognized. In revising the genus, we not only provide updated identification tools and describe two new species (D. incurvata comb. nov. from Chile and D. fenestrata sp. nov. from the Antipodes Islands), but also carry out biogeographic analyses to determine the evolutionary history of buoyancy in the genus. Although the ancestral state was resolved as non-buoyant, the distribution of species suggests that this trait has been both gained and lost, possibly more than once. We conclude that although buoyancy is a trait that can be useful for dispersal (creating evolutionary pressure for its gain), there is also evolutionary pressure for its loss as it restricts species to narrow environmental ranges (i.e., shallow depths).


Asunto(s)
Kelp , Algas Marinas , Animales , Bovinos , Chile , Masculino , Filogenia
11.
Mol Ecol ; 28(22): 4941-4957, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31596994

RESUMEN

Antarctica is isolated, surrounded by the Southern Ocean and has experienced extreme environmental conditions for millions of years, including during recent Pleistocene glacial maxima. How Antarctic terrestrial species might have survived these glaciations has been a topic of intense interest, yet many questions remain unanswered, particularly for Antarctica's invertebrate fauna. We examine whether genetic data from a widespread group of terrestrial invertebrates, springtails (Collembola, Isotomidae) of the genus Cryptopygus, show evidence for long-term survival in glacial refugia along the Antarctic Peninsula. We use genome-wide SNP analyses (via genotyping-by-sequencing, GBS) and mitochondrial data to examine population diversity and differentiation across more than 20 sites spanning >950 km on the Peninsula, and from islands both close to the Peninsula and up to ~1,900 km away. Population structure analysis indicates the presence of strong local clusters of diversity, and we infer that patterns represent a complex interplay of isolation in local refugia coupled with occasional successful long-distance dispersal events. We identified wind and degree days as significant environmental drivers of genetic diversity, with windier and warmer sites hosting higher diversity. Thus, we infer that refugial areas along the Antarctic Peninsula have allowed populations of indigenous springtails to survive in situ throughout glacial periods. Despite the difficulties of dispersal in cold, desiccating conditions, Cryptopygus springtails on the Peninsula appear to have achieved multiple long-distance colonization events, most likely through wind-related dispersal events.


Asunto(s)
Variación Genética/genética , Invertebrados/genética , Polimorfismo de Nucleótido Simple/genética , Animales , Regiones Antárticas , Biodiversidad , Evolución Molecular , Estudio de Asociación del Genoma Completo/métodos , Geografía , Cubierta de Hielo , Islas , Mitocondrias/genética , Refugio de Fauna
12.
Mol Phylogenet Evol ; 107: 630-643, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28017856

RESUMEN

Genetic analyses can reveal a wealth of hitherto undiscovered cryptic biodiversity. For co-occurring and morphologically similar species, the combination of molecular, ecological and morphological analyses provides an excellent opportunity for understanding some of the processes that can lead to divergence and speciation. The Australian endemic brown macroalga Durvillaea potatorum (Phaeophyceae) was examined with a combination of genetic and morphological approaches to confirm the presence of two separate species and to infer the processes that led to their divergence. A total of 331 individuals from 11 sites around coastal Tasmania were collected and measured in situ for a range of morphological and ecological characteristics. Tissue samples were also collected for each individual to allow genetic analyses using mitochondrial (COI) and nuclear (28S) markers. Genetic analyses confirmed the presence of two deeply divergent clades. The significant morphological differentiation, despite high levels of intra-lineage variability, further supported their recognition as distinct species. We describe a new species, D. amatheiae sp. nov., which is characterised by a narrower and proportionately shorter stipe, shorter total length, and higher number of stipitate lateral blades and branches than D. potatorum (sensu stricto). The occurrence of both species in sympatry along Tasmania's eastern and western coasts, as well as their contrasting patterns of haplotype diversity, supports a hypothesis of geographical isolation, allopatric speciation and subsequent secondary contact in response to sea level and ocean current change throughout the Pleistocene glaciation cycles. This research contributes to resolving the phylogenetic relationships, taxonomy and evolution of the ecologically keystone kelp genus Durvillaea.


Asunto(s)
Variación Genética , Kelp/clasificación , Kelp/genética , Filogenia , Simpatría/genética , Australia , Secuencia de Bases , ADN Mitocondrial/genética , Ecosistema , Geografía , Haplotipos , Análisis Multivariante
13.
Proc Natl Acad Sci U S A ; 111(15): 5634-9, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24616489

RESUMEN

Climate change has played a critical role in the evolution and structure of Earth's biodiversity. Geothermal activity, which can maintain ice-free terrain in glaciated regions, provides a tantalizing solution to the question of how diverse life can survive glaciations. No comprehensive assessment of this "geothermal glacial refugia" hypothesis has yet been undertaken, but Antarctica provides a unique setting for doing so. The continent has experienced repeated glaciations that most models indicate blanketed the continent in ice, yet many Antarctic species appear to have evolved in almost total isolation for millions of years, and hence must have persisted in situ throughout. How could terrestrial species have survived extreme glaciation events on the continent? Under a hypothesis of geothermal glacial refugia and subsequent recolonization of nongeothermal regions, we would expect to find greater contemporary diversity close to geothermal sites than in nongeothermal regions, and significant nestedness by distance of this diversity. We used spatial modeling approaches and the most comprehensive, validated terrestrial biodiversity dataset yet created for Antarctica to assess spatial patterns of diversity on the continent. Models clearly support our hypothesis, indicating that geothermally active regions have played a key role in structuring biodiversity patterns in Antarctica. These results provide critical insights into the evolutionary importance of geothermal refugia and the history of Antarctic species.


Asunto(s)
Biodiversidad , Evolución Biológica , Clima , Energía Geotérmica/historia , Cubierta de Hielo/microbiología , Regiones Antárticas , Historia Antigua , Modelos Biológicos , Especificidad de la Especie
14.
Mol Ecol ; 25(15): 3683-95, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27238591

RESUMEN

Genomewide SNP data generated by nontargeted methods such as RAD and GBS are increasingly being used in phylogenetic and phylogeographic analyses. When these methods are used in the absence of a reference genome, however, little is known about the locations and evolution of the SNPs. In using such data to address phylogenetic questions, researchers risk drawing false conclusions, particularly if a representative number of SNPs is not obtained. Here, we empirically test the robustness of phylogenetic inference based on SNP data for closely related lineages. We conducted a genomewide analysis of 75 712 SNPs, generated via GBS, of southern bull-kelp (Durvillaea). Durvillaea chathamensis co-occurs with D. antarctica on Chatham Island, but the two species have previously been found to be so genetically similar that the status of the former has been questioned. Our results show that D. chathamensis, which differs from D. antarctica ecologically as well as morphologically, is indeed a reproductively isolated species. Furthermore, our replicated analyses show that D. chathamensis cannot be reliably distinguished phylogenetically from closely related D. antarctica using subsets (ranging in size from 400 to 10 000 sites) of the 40 912 parsimony-informative SNPs in our data set and that bootstrap values alone can give misleading impressions of the strength of phylogenetic inferences. These results highlight the importance of independently replicating SNP analyses to verify that phylogenetic inferences based on nontargeted SNP data are robust. Our study also demonstrates that modern genomic approaches can be used to identify cases of recent or incipient speciation that traditional approaches (e.g. Sanger sequencing of a few loci) may be unable to detect or resolve.


Asunto(s)
Kelp/genética , Filogenia , Polimorfismo de Nucleótido Simple , Especiación Genética , Genómica , Análisis de Secuencia de ADN
15.
J Phycol ; 51(3): 574-85, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26986671

RESUMEN

Spatial patterns of genetic diversity provide insight into the demography and history of species. Morphologically similar but genetically distinct "cryptic" species are increasingly being recognized in marine organisms through molecular analyses. Such species are, on closer inspection, often discovered to display contrasting life histories or occasionally minor morphological differences; molecular tools can thus be useful indicators of diversity. Bostrychia intricata, a marine red alga, is widely distributed throughout the Southern Hemisphere and comprises many cryptic species. We used mitochondrial cytochrome c oxidase I gene sequences to assess the genetic variation, population genetic structure, and demographic history of B. intricata in New Zealand. Our results supported the existence of three cryptic species of B. intricata (N2, N4, and N5) in New Zealand. Cryptic species N4, which was found throughout New Zealand, showed a higher genetic diversity and wider distribution than the other two species, which were only found in the North Island and northern South Island. Our analyses showed low to moderate genetic differentiation among eastern North Island populations for cryptic species N2, but high differentiation among North and South Island populations for N4, suggesting different population structure between these cryptic species. Data also indicated that N2 has recently undergone population expansion, probably since the Last Glacial Maximum (LGM), while the higher genetic diversity in N4 populations suggests persistence in situ through the LGM. The contrasting population structures and inferred demographic histories of these species highlight that life history can vary greatly even among morphologically indistinguishable taxa.

16.
Mar Environ Res ; 198: 106523, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38678752

RESUMEN

Climate change is altering environmental conditions, with microclimates providing small-scale refuges within otherwise challenging environments. Durvillaea (southern bull kelp; rimurapa) is a genus of large intertidal fucoid algae, and some species harbour diverse invertebrate communities in their holdfasts. We hypothesised that animal-excavated Durvillaea holdfasts provide a thermal refuge for epibiont species, and tested this hypothesis using the exemplar species D. poha. Using a southern Aotearoa New Zealand population as a case-study, we found extreme temperatures outside the holdfast were 4.4 °C higher in summer and 6.9 °C lower in winter than inside the holdfast. A microclimate model of the holdfasts was built and used to forecast microclimates under 2100 conditions. Temperatures are predicted to increase by 2-3 °C, which may exceed the tolerances of D. poha. However, if D. poha or a similar congeneric persists, temperatures inside holdfasts will remain less extreme than the external environment. The thermal tolerances of two Durvillaea-associated invertebrates, the trochid gastropod Cantharidus antipodum and the amphipod Parawaldeckia kidderi, were also assessed; C. antipodum, but not P. kidderi, displayed metabolic depression at temperatures above and below those inside holdfasts, suggesting that they would be vulnerable outside the holdfast and with future warming. Microclimates, such as those within D. poha holdfasts or holdfasts of similar species, will therefore be important refuges for the survival of species both at the northern (retreating edge) and southern (expanding edge) limits of their distributions.


Asunto(s)
Cambio Climático , Invertebrados , Kelp , Microclima , Animales , Kelp/fisiología , Nueva Zelanda , Invertebrados/fisiología , Temperatura , Anfípodos/fisiología
17.
FEMS Microbiol Ecol ; 100(7)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38857884

RESUMEN

Host-associated microbial communities are shaped by host migratory movements. These movements can have contrasting impacts on microbiota, and understanding such patterns can provide insight into the ecological processes that contribute to community diversity. Furthermore, long-distance movements to new environments are anticipated to occur with increasing frequency due to host distribution shifts resulting from climate change. Understanding how hosts transport their microbiota with them could be of importance when examining biological invasions. Although microbial community shifts are well-documented, the underlying mechanisms that lead to the restructuring of these communities remain relatively unexplored. Using literature and ecological simulations, we develop a framework to elucidate the major factors that lead to community change. We group host movements into two types-regular (repeated/cyclical migratory movements, as found in many birds and mammals) and irregular (stochastic/infrequent movements that do not occur on a cyclical basis, as found in many insects and plants). Ecological simulations and prior research suggest that movement type and frequency, alongside environmental exposure (e.g. internal/external microbiota) are key considerations for understanding movement-associated community changes. From our framework, we derive a series of testable hypotheses, and suggest means to test them, to facilitate future research into host movement and microbial community dynamics.


Asunto(s)
Microbiota , Animales , Migración Animal , Biodiversidad , Aves/microbiología , Cambio Climático , Interacciones Microbiota-Huesped , Mamíferos/microbiología
18.
J R Soc Interface ; 20(202): 20230105, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37194268

RESUMEN

Detached buoyant kelp can disperse thousands of kilometres at sea and can colonize newly available shores in the wake of disturbances that wipe out competitors. Localized earthquake uplift can cause extirpation of intertidal kelp populations followed by recolonization. Sources of recolonizing kelp can be detectable in genomic structure of contemporary populations. Our field observations combined with LiDAR mapping identified a previously unrecognized zone of uplifted rocky coastline in a region that is slowly subsiding. Intertidal kelp (Durvillaea antarctica) on the uplifted section of coast is genetically distinctive from nearby populations, with genomic signatures most similar to that of kelp 300 km to the south. Genetic divergence between these locations suggests reproductive isolation for thousands of years. Combined geological and genetic data suggest that this uplift event occurred during one of four major earthquakes between 6000 and 2000 years ago, with one of the younger events most likely. Extirpation of the pre-existing kelp required sudden uplift of approximately 2 metres, precluding several small incremental uplift events. Our results show the power of integrating biological (genomic) analyses with geological data to understand ancient geological processes and their ecological impacts.


Asunto(s)
Terremotos , Kelp , Kelp/genética , Genómica , Ecosistema
19.
Trends Ecol Evol ; 38(1): 24-34, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35934551

RESUMEN

Antarctic ecosystems are under increasing anthropogenic pressure, but efforts to predict the responses of Antarctic biodiversity to environmental change are hindered by considerable data challenges. Here, we illustrate how novel data capture technologies provide exciting opportunities to sample Antarctic biodiversity at wider spatiotemporal scales. Data integration frameworks, such as point process and hierarchical models, can mitigate weaknesses in individual data sets, improving confidence in their predictions. Increasing process knowledge in models is imperative to achieving improved forecasts of Antarctic biodiversity, which can be attained for data-limited species using hybrid modelling frameworks. Leveraging these state-of-the-art tools will help to overcome many of the data scarcity challenges presented by the remoteness of Antarctica, enabling more robust forecasts both near- and long-term.


Asunto(s)
Biodiversidad , Ecosistema , Regiones Antárticas , Predicción , Cambio Climático
20.
Proc Natl Acad Sci U S A ; 106(9): 3249-53, 2009 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-19204277

RESUMEN

The end of the Last Glacial Maximum (LGM) dramatically reshaped temperate ecosystems, with many species moving poleward as temperatures rose and ice receded. Whereas reinvading terrestrial taxa tracked melting glaciers, marine biota recolonized ocean habitats freed by retreating sea ice. The extent of sea ice in the Southern Hemisphere during the LGM has, however, yet to be fully resolved, with most palaeogeographic studies suggesting only minimal or patchy ice cover in subantarctic waters. Here, through population genetic analyses of the widespread Southern Bull Kelp (Durvillaea antarctica), we present evidence for persistent ice scour affecting subantarctic islands during the LGM. Using mitochondrial and chloroplast genetic markers (COI; rbcL) to genetically characterize some 300 kelp samples from 45 Southern Ocean localities, we reveal a remarkable pattern of recent recolonization in the subantarctic. Specifically, in contrast to the marked phylogeographic structure observed across coastal New Zealand and Chile (10- to 100-km scales), subantarctic samples show striking genetic homogeneity over vast distances (10,000-km scales), with a single widespread haplotype observed for each marker. From these results, we suggest that sea ice expanded further and ice scour during the LGM impacted shallow-water subantarctic marine ecosystems more extensively than previously suggested.


Asunto(s)
Cubierta de Hielo , Kelp/genética , Regiones Antárticas , Haplotipos , Datos de Secuencia Molecular , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA