Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(6)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802681

RESUMEN

In this study, we test the performance of a compact gas chromatograph with photoionization detector (GC-PID) and optimize the configuration to detect ambient (sub-ppb) levels of benzene, toluene, ethylbenzene, and xylene isomers (BTEX). The GC-PID system was designed to serve as a relatively inexpensive (~10 k USD) and field-deployable air toxic screening tool alternative to conventional benchtop GCs. The instrument uses ambient air as a carrier gas and consists of a Tenax-GR sorbent-based preconcentrator, a gas sample valve, two capillary columns, and a photoionization detector (PID) with a small footprint and low power requirement. The performance of the GC-PID has been evaluated in terms of system linearity and sensitivity in field conditions. The BTEX-GC system demonstrated the capacity to detect BTEX at levels as high as 500 ppb with a linear calibration range of 0-100 ppb. A detection limit lower than 1 ppb was found for all BTEX compounds with a sampling volume of 1 L. No significant drift in the instrument was observed. A time-varying calibration technique was established that requires minimal equipment for field operations and optimizes the sampling procedure for field measurements. With an analysis time of less than 15 min, the compact GC-PID is ideal for field deployment of background and polluted atmospheres for near-real time measurements of BTEX. The results highlight the application of the compact and easily deployable GC-PID for community monitoring and screening of air toxics.

2.
Sci Total Environ ; 658: 1549-1558, 2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30678013

RESUMEN

Pollutants in tailpipe emissions can be highly elevated around roadways, and in early mornings the pollution plume can extend hundreds of meters into surrounding neighborhoods. Solid sound walls and vegetation barriers are commonly used to mitigate noise, but they also help mitigate near-road air pollution. Here we assess the effectiveness of barriers consisting of vegetation only and of a combination of vegetation and a solid sound wall (combination barrier) in reducing pollution concentrations downwind of roads, under stable atmospheric stability and calm to light wind conditions. Because there was no practical (no barrier) control site in the area, we primarily compare the two barrier types to each other and explore the importance of atmospheric conditions. Using measurements collected with a mobile platform, we develop concentration decay profiles of ultrafine and fine particles, oxides of nitrogen (NO and NO2) and carbon monoxide downwind of a freeway in California with different barrier configurations and meteorological conditions. Diurnally averaged data collected with passive samplers indicate that pollution from morning rush hour has about equal impact as the entire remainder of the day, because of differences in atmospheric dispersion as the day progresses. Under calm and stable atmospheric conditions (wind speed <0.6 m/s); a vegetation-only barrier was more effective than a combination barrier with a total height that was somewhat lower than the vegetation-only barrier, by 10-24% in the first 160 m downwind. Under light winds (above ~ 0.6 but below 3 m/s) and stable conditions, the combination barrier was more effective than the vegetation barrier alone, by 6-33%, in the first 160 m from the barrier. The average particle size downwind of the vegetation-only barrier was larger than downwind of the combination barrier, indicating that particle deposition plays an important role in the reductions observed downwind of vegetation. Our results are consistent with the notion that at low wind speeds, vegetation acts as an effective barrier. Overall, adding vegetation alone or to an existing solid barrier results in lower downwind pollution concentrations, especially under low wind speeds when concentrations can be high.


Asunto(s)
Contaminantes Atmosféricos/análisis , Conservación de los Recursos Naturales/métodos , Monitoreo del Ambiente , Emisiones de Vehículos/análisis , Contaminación del Aire/análisis , California , Tamaño de la Partícula , Material Particulado/análisis , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA