Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Biol Chem ; 300(9): 107596, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032652

RESUMEN

Alginate is a polysaccharide consumed by humans in edible seaweed and different foods where it is applied as a texturizing hydrocolloid or in encapsulations of drugs and probiotics. While gut bacteria are found to utilize and ferment alginate to health-beneficial short-chain fatty acids, knowledge on the details of the molecular reactions is sparse. Alginates are composed of mannuronic acid (M) and its C-5 epimer guluronic acid (G). An alginate-related polysaccharide utilization locus (PUL) has been identified in the gut bacterium Bacteroides eggerthii DSM 20697. The PUL encodes two polysaccharide lyases (PLs) from the PL6 (BePL6) and PL17 (BePL17) families as well as a KdgF-like metalloprotein (BeKdgF) known to catalyze ring-opening of 4,5-unsaturated monouronates yielding 4-deoxy-l-erythro-5-hexoseulose uronate (DEH). B. eggerthii DSM 20697 does not grow on alginate, but readily proliferates with a lag phase of a few hours in the presence of an endo-acting alginate lyase A1-I from the marine bacterium Sphingomonas sp. A1. The B. eggerthii lyases are both exo-acting and while BePL6 is strictly G-block specific, BePL17 prefers M-blocks. BeKdgF retained 10-27% activity in the presence of 0.1-1 mM EDTA. X-ray crystallography was used to investigate the three-dimensional structure of BeKdgF, based on which a catalytic mechanism was proposed to involve Asp102, acting as acid/base having pKa of 5.9 as determined by NMR pH titration. BePL6 and BePL17 cooperate in alginate degradation with BeKdgF linearizing producing 4,5-unsaturated monouronates. Their efficiency of alginate degradation was much enhanced by the addition of the A1-I alginate lyase.


Asunto(s)
Alginatos , Proteínas Bacterianas , Bacteroides , Polisacárido Liasas , Alginatos/metabolismo , Alginatos/química , Polisacárido Liasas/metabolismo , Polisacárido Liasas/química , Bacteroides/enzimología , Bacteroides/metabolismo , Humanos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Microbioma Gastrointestinal , Ácidos Hexurónicos
2.
Plant J ; 111(6): 1539-1549, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35819080

RESUMEN

Cyanogenic glucosides are important defense molecules in plants with useful biological activities in animals. Their last biosynthetic step consists of a glycosylation reaction that confers stability and increases structural diversity and is catalyzed by the UDP-dependent glycosyltransferases (UGTs) of glycosyltransferase family 1. These versatile enzymes have large and varied substrate scopes, and the structure-function relationships controlling scope and specificity remain poorly understood. Here, we report substrate-bound crystal structures and rational engineering of substrate and stereo-specificities of UGT85B1 from Sorghum bicolor involved in biosynthesis of the cyanogenic glucoside dhurrin. Substrate specificity was shifted from the natural substrate (S)-p-hydroxymandelonitrile to (S)-mandelonitrile by combining a mutation to abolish hydrogen bonding to the p-hydroxyl group with a mutation to provide steric hindrance at the p-hydroxyl group binding site (V132A/Q225W). Further, stereo-specificity was shifted from (S) to (R) by substituting four rationally chosen residues within 6 Å of the nitrile group (M312T/A313T/H408F/G409A). These activities were compared to two other UGTs involved in the biosynthesis of aromatic cyanogenic glucosides in Prunus dulcis (almond) and Eucalyptus cladocalyx. Together, these studies enabled us to pinpoint factors that drive substrate and stereo-specificities in the cyanogenic glucoside biosynthetic UGTs. The structure-guided engineering of the functional properties of UGT85B1 enhances our understanding of the evolution of UGTs involved in the biosynthesis of cyanogenic glucosides and will enable future engineering efforts towards new biotechnological applications.


Asunto(s)
Aminoácidos , Nitrilos , Animales , Glucósidos/metabolismo , Glicósidos , Glicosiltransferasas , Nitrilos/metabolismo , Uridina Difosfato
3.
Nat Prod Rep ; 38(3): 432-443, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33005913

RESUMEN

Covering: up to 2020C-Glycosyltransferases are enzymes that catalyse the transfer of sugar molecules to carbon atoms in substituted aromatic rings of a variety of natural products. The resulting ß-C-glycosidic bond is more stable in vivo than most O-glycosidic bonds, hence offering an attractive modulation of a variety of compounds with multiple biological activities. While C-glycosylated natural products have been known for centuries, our knowledge of corresponding C-glycosyltransferases is scarce. Here, we discuss commonalities and differences in the known C-glycosyltransferases, review attempts to leverage them as synthetic biocatalysts, and discuss current challenges and limitations in their research and application.


Asunto(s)
Productos Biológicos/química , Biotecnología/métodos , Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Productos Biológicos/metabolismo , Glicosilación , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ingeniería de Proteínas
4.
J Biol Chem ; 294(31): 11701-11711, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31186348

RESUMEN

Bifidobacteria are exposed to substantial amounts of dietary ß-galactosides. Distinctive preferences for growth on different ß-galactosides are observed within Bifidobacterium members, but the basis of these preferences remains unclear. We previously described the first ß-(1,6)/(1,3)-galactosidase from Bifidobacterium animalis subsp. lactis Bl-04. This enzyme is relatively promiscuous, exhibiting only 5-fold higher efficiency on the preferred ß-(1,6)-galactobiose than the ß-(1,4) isomer. Here, we characterize the solute-binding protein (Bal6GBP) that governs the specificity of the ABC transporter encoded by the same ß-galactoside utilization locus. We observed that although Bal6GBP recognizes both ß-(1,6)- and ß-(1,4)-galactobiose, Bal6GBP has a 1630-fold higher selectivity for the former, reflected in dramatic differences in growth, with several hours lag on less preferred ß-(1,4)- and ß-(1,3)-galactobiose. Experiments performed in the presence of varying proportions of ß-(1,4)/ß-(1,6)-galactobioses indicated that the preferred substrate was preferentially depleted from the culture supernatant. This established that the poor growth on the nonpreferred ß-(1,4) was due to inefficient uptake. We solved the structure of Bal6GBP in complex with ß-(1,6)-galactobiose at 1.39 Å resolution, revealing the structural basis of this strict selectivity. Moreover, we observed a close evolutionary relationship with the human milk disaccharide lacto-N-biose-binding protein from Bifidobacterium longum, indicating that the recognition of the nonreducing galactosyl is essentially conserved, whereas the adjacent position is diversified to fit different glycosidic linkages and monosaccharide residues. These findings indicate that oligosaccharide uptake has a pivotal role in governing selectivity for distinct growth substrates and have uncovered evolutionary trajectories that shape the diversification of sugar uptake proteins within Bifidobacterium.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Bifidobacterium animalis/crecimiento & desarrollo , Galactosidasas/metabolismo , Galactósidos/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Bifidobacterium animalis/enzimología , Bifidobacterium animalis/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Evolución Molecular , Galactosidasas/química , Galactósidos/química , Cinética , Simulación de Dinámica Molecular , Unión Proteica , Especificidad por Sustrato
5.
J Biol Chem ; 294(46): 17339-17353, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31558605

RESUMEN

Feruloyl esterases (EC 3.1.1.73), belonging to carbohydrate esterase family 1 (CE1), hydrolyze ester bonds between ferulic acid (FA) and arabinose moieties in arabinoxylans. Recently, some CE1 enzymes identified in metagenomics studies have been predicted to contain a family 48 carbohydrate-binding module (CBM48), a CBM family associated with starch binding. Two of these CE1s, wastewater treatment sludge (wts) Fae1A and wtsFae1B isolated from wastewater treatment surplus sludge, have a cognate CBM48 domain and are feruloyl esterases, and wtsFae1A binds arabinoxylan. Here, we show that wtsFae1B also binds to arabinoxylan and that neither binds starch. Surface plasmon resonance analysis revealed that wtsFae1B's Kd for xylohexaose is 14.8 µm and that it does not bind to starch mimics, ß-cyclodextrin, or maltohexaose. Interestingly, in the absence of CBM48 domains, the CE1 regions from wtsFae1A and wtsFae1B did not bind arabinoxylan and were also unable to catalyze FA release from arabinoxylan. Pretreatment with a ß-d-1,4-xylanase did enable CE1 domain-mediated FA release from arabinoxylan in the absence of CBM48, indicating that CBM48 is essential for the CE1 activity on the polysaccharide. Crystal structures of wtsFae1A (at 1.63 Å resolution) and wtsFae1B (1.98 Å) revealed that both are folded proteins comprising structurally-conserved hydrogen bonds that lock the CBM48 position relative to that of the CE1 domain. wtsFae1A docking indicated that both enzymes accommodate the arabinoxylan backbone in a cleft at the CE1-CBM48 domain interface. Binding at this cleft appears to enable CE1 activities on polymeric arabinoxylan, illustrating an unexpected and crucial role of CBM48 domains for accommodating arabinoxylan.


Asunto(s)
Carboxilesterasa/química , Hidrolasas de Éster Carboxílico/química , Ácidos Cumáricos/química , Receptores de Superficie Celular/química , Arabinosa/química , Carboxilesterasa/genética , Hidrolasas de Éster Carboxílico/ultraestructura , Cristalografía por Rayos X , Escherichia coli/química , Escherichia coli/enzimología , Hidrólisis , Oligosacáridos/química , Polisacáridos/química , Conformación Proteica , Receptores de Superficie Celular/ultraestructura , Especificidad por Sustrato , Resonancia por Plasmón de Superficie , Aguas Residuales/química , Xilanos/química
6.
J Biol Chem ; 294(47): 17915-17930, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31530640

RESUMEN

Alginate is a linear polysaccharide from brown algae consisting of 1,4-linked ß-d-mannuronic acid (M) and α-l-guluronic acid (G) arranged in M, G, and mixed MG blocks. Alginate was assumed to be indigestible in humans, but bacteria isolated from fecal samples can utilize alginate. Moreover, genomes of some human gut microbiome-associated bacteria encode putative alginate-degrading enzymes. Here, we genome-mined a polysaccharide lyase family 6 alginate lyase from the gut bacterium Bacteroides cellulosilyticus (BcelPL6). The structure of recombinant BcelPL6 was solved by X-ray crystallography to 1.3 Å resolution, revealing a single-domain, monomeric parallel ß-helix containing a 10-step asparagine ladder characteristic of alginate-converting parallel ß-helix enzymes. Substitutions of the conserved catalytic site residues Lys-249, Arg-270, and His-271 resulted in activity loss. However, imidazole restored the activity of BcelPL6-H271N to 2.5% that of the native enzyme. Molecular docking oriented tetra-mannuronic acid for syn attack correlated with M specificity. Using biochemical analyses, we found that BcelPL6 initially releases unsaturated oligosaccharides of a degree of polymerization of 2-7 from alginate and polyM, which were further degraded to di- and trisaccharides. Unlike other PL6 members, BcelPL6 had low activity on polyMG and none on polyG. Surprisingly, polyG increased BcelPL6 activity on alginate 7-fold. LC-electrospray ionization-MS quantification of products and lack of activity on NaBH4-reduced octa-mannuronic acid indicated that BcelPL6 is an endolyase that further degrades the oligosaccharide products with an intact reducing end. We anticipate that our results advance predictions of the specificity and mode of action of PL6 enzymes.


Asunto(s)
Bacteroides/enzimología , Microbioma Gastrointestinal , Ácidos Hexurónicos/metabolismo , Polisacárido Liasas/química , Polisacárido Liasas/metabolismo , Alginatos/química , Alginatos/metabolismo , Bacteroides/genética , Genoma Bacteriano , Humanos , Cinética , Simulación del Acoplamiento Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación/genética , Estructura Secundaria de Proteína , Electricidad Estática , Homología Estructural de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato
7.
Nat Immunol ; 9(7): 753-60, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18536718

RESUMEN

To provide insight into the structural and functional properties of human complement component 5 (C5), we determined its crystal structure at a resolution of 3.1 A. The core of C5 adopted a structure resembling that of C3, with the domain arrangement at the position corresponding to the C3 thioester being very well conserved. However, in contrast to C3, the convertase cleavage site in C5 was ordered and the C345C domain flexibly attached to the core of C5. Binding of the tick C5 inhibitor OmCI to C5 resulted in stabilization of the global conformation of C5 but did not block the convertase cleavage site. The structure of C5 may render possible a structure-based approach for the design of new selective complement inhibitors.


Asunto(s)
Complemento C5/química , Complemento C5/metabolismo , Proteínas de Insectos/metabolismo , Estructura Cuaternaria de Proteína , Animales , Proteínas de Artrópodos , Sitios de Unión , Proteínas Portadoras , Complemento C3 , Cristalografía por Rayos X , Humanos , Proteínas de Insectos/química , Resonancia por Plasmón de Superficie
8.
Glycobiology ; 29(12): 839-846, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31679023

RESUMEN

l-arabinofuranose is a ubiquitous component of the cell wall and various natural products in plants, where it is synthesized from cytosolic UDP-arabinopyranose (UDP-Arap). The biosynthetic machinery long remained enigmatic in terms of responsible enzymes and subcellular localization. With the discovery of UDP-Arap mutase in plant cytosol, the demonstration of its role in cell-wall arabinose incorporation and the identification of UDP-arabinofuranose transporters in the Golgi membrane, it is clear that the cytosolic UDP-Arap mutases are the key enzymes converting UDP-Arap to UDP-arabinofuranose for cell wall and natural product biosynthesis. This has recently been confirmed by several genotype/phenotype studies. In contrast to the solid evidence pertaining to UDP-Arap mutase function in vivo, the molecular features, including enzymatic mechanism and oligomeric state, remain unknown. However, these enzymes belong to the small family of proteins originally identified as reversibly glycosylated polypeptides (RGPs), which has been studied for >20 years. Here, we review the UDP-Arap mutase and RGP literature together, to summarize and systemize reported molecular characteristics and relations to other proteins.


Asunto(s)
Transferasas Intramoleculares/química , Transferasas Intramoleculares/metabolismo , Oryza/enzimología , Azúcares de Uridina Difosfato/química , Azúcares de Uridina Difosfato/metabolismo , Productos Biológicos/química , Productos Biológicos/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Oryza/citología
10.
J Biol Chem ; 291(38): 20220-31, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27502277

RESUMEN

The molecular details and impact of oligosaccharide uptake by distinct human gut microbiota (HGM) are currently not well understood. Non-digestible dietary galacto- and gluco-α-(1,6)-oligosaccharides from legumes and starch, respectively, are preferentially fermented by mainly bifidobacteria and lactobacilli in the human gut. Here we show that the solute binding protein (BlG16BP) associated with an ATP binding cassette (ABC) transporter from the probiotic Bifidobacterium animalis subsp. lactis Bl-04 binds α-(1,6)-linked glucosides and galactosides of varying size, linkage, and monosaccharide composition with preference for the trisaccharides raffinose and panose. This preference is also reflected in the α-(1,6)-galactoside uptake profile of the bacterium. Structures of BlG16BP in complex with raffinose and panose revealed the basis for the remarkable ligand binding plasticity of BlG16BP, which recognizes the non-reducing α-(1,6)-diglycoside in its ligands. BlG16BP homologues occur predominantly in bifidobacteria and a few Firmicutes but lack in other HGMs. Among seven bifidobacterial taxa, only those possessing this transporter displayed growth on α-(1,6)-glycosides. Competition assays revealed that the dominant HGM commensal Bacteroides ovatus was out-competed by B. animalis subsp. lactis Bl-04 in mixed cultures growing on raffinose, the preferred ligand for the BlG16BP. By comparison, B. ovatus mono-cultures grew very efficiently on this trisaccharide. These findings suggest that the ABC-mediated uptake of raffinose provides an important competitive advantage, particularly against dominant Bacteroides that lack glycan-specific ABC-transporters. This novel insight highlights the role of glycan transport in defining the metabolic specialization of gut bacteria.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Bifidobacterium animalis/crecimiento & desarrollo , Oligosacáridos/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Proteínas Bacterianas/genética , Bacteroides/genética , Bacteroides/crecimiento & desarrollo , Bifidobacterium animalis/genética , Humanos
11.
Mol Microbiol ; 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25287704

RESUMEN

The Bifidobacterium genus harbours several health promoting members of the gut microbiota. Bifidobacteria display metabolic specialization by preferentially utilizing dietary or host-derived ß-galactosides. This study investigates the biochemistry and structure of a glycoside hydrolase family 42 (GH42) ß-galactosidase from the probiotic Bifidobacterium animalis subsp. lactis Bl-04 (BlGal42A). BlGal42A displays a preference for undecorated ß1-6 and ß1-3 linked galactosides and populates a phylogenetic cluster with close bifidobacterial homologues implicated in the utilization of N-acetyl substituted ß1-3 galactosides from human milk and mucin. A long loop containing an invariant tryptophan in GH42, proposed to bind substrate at subsite + 1, is identified here as specificity signature within this clade of bifidobacterial enzymes. Galactose binding at the subsite - 1 of the active site induced conformational changes resulting in an extra polar interaction and the ordering of a flexible loop that narrows the active site. The amino acid sequence of this loop provides an additional specificity signature within this GH42 clade. The phylogenetic relatedness of enzymes targeting ß1-6 and ß1-3 galactosides likely reflects structural differences between these substrates and ß1-4 galactosides, containing an axial galactosidic bond. These data advance our molecular understanding of the evolution of sub-specificities that support metabolic specialization in the gut niche.

12.
Mol Microbiol ; 90(5): 1100-12, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24279727

RESUMEN

Glycan utilization plays a key role in modulating the composition of the gut microbiota, but molecular insight into oligosaccharide uptake by this microbial community is lacking. Arabinoxylo-oligosaccharides (AXOS) are abundant in the diet, and are selectively fermented by probiotic bifidobacteria in the colon. Here we show how selectivity for AXOS uptake is established by the probiotic strain Bifidobacterium animalis subsp. lactis Bl-04. The binding protein BlAXBP, which is associated with an ATP-binding cassette (ABC) transporter that mediates the uptake of AXOS, displays an exceptionally broad specificity for arabinosyl-decorated and undecorated xylo-oligosaccharides, with preference for tri- and tetra-saccharides. Crystal structures of BlAXBP in complex with four different ligands revealed the basis for this versatility. Uniquely, the protein was able to recognize oligosaccharides in two opposite orientations, which facilitates the optimization of interactions with the various ligands. Broad substrate specificity was further enhanced by a spacious binding pocket accommodating decorations at different mainchain positions and conformational flexibility of a lid-like loop. Phylogenetic and genetic analyses show that BlAXBP is highly conserved within Bifidobacterium, but is lacking in other gut microbiota members. These data indicate niche adaptation within Bifidobacterium and highlight the metabolic syntrophy (cross-feeding) among the gut microbiota.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bifidobacterium/química , Bifidobacterium/metabolismo , Oligosacáridos/metabolismo , Proteínas Bacterianas/genética , Bifidobacterium/genética , Sitios de Unión , Clonación Molecular , Evolución Molecular , Genes Bacterianos , Humanos , Ligandos , Modelos Moleculares , Filogenia , Probióticos , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometría de Fluorescencia , Especificidad por Sustrato , Resonancia por Plasmón de Superficie , Xilanos/metabolismo
13.
Chem Commun (Camb) ; 60(4): 440-443, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38087900

RESUMEN

TpPL7A and TpPL7B, members of CAZy family PL7, act as ß-glucuronan lyases. TpPL7A diverges by lacking the catalytic histidine, identified as the Brønsted base in PL7 alginate lyases. Our research, including TpPL7A's crystal structure, and mutagenesis studies, reveals a shared syn-ß-elimination mechanism with a single tyrosine serving as both base and acid catalyst. This mechanism may extend to subfamily PL7_4 glucuronan lyases.

14.
Biochimie ; 221: 13-19, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38199518

RESUMEN

Sucrose phosphorylases, through transglycosylation reactions, are interesting enzymes that can transfer regioselectively glucose from sucrose, the donor substrate, onto acceptors like flavonoids to form glycoconjugates and hence modulate their solubility and bioactivity. Here, we report for the first time the structure of sucrose phosphorylase from the marine bacteria Alteromonas mediterranea (AmSP) and its enzymatic properties. Kinetics of sucrose hydrolysis and transglucosylation capacities on (+)-catechin were investigated. Wild-type enzyme (AmSP-WT) displayed high hydrolytic activity on sucrose and was devoid of transglucosylation activity on (+)-catechin. Two variants, AmSP-Q353F and AmSP-P140D catalysed the regiospecific transglucosylation of (+)-catechin: 89 % of a novel compound (+)-catechin-4'-O-α-d-glucopyranoside (CAT-4') for AmSP-P140D and 92 % of (+)-catechin-3'-O-α-d-glucopyranoside (CAT-3') for AmSP-Q353F. The compound CAT-4' was fully characterized by NMR and mass spectrometry. An explanation for this difference in regiospecificity was provided at atomic level by molecular docking simulations: AmSP-P140D was found to preferentially bind (+)-catechin in a mode that favours glucosylation on its hydroxyl group in position 4' while the binding mode in AmSP-Q353F favoured glucosylation on its hydroxyl group in position 3'.


Asunto(s)
Catequina , Glucosiltransferasas , Glucosiltransferasas/metabolismo , Glucosiltransferasas/química , Catequina/metabolismo , Catequina/química , Glicosilación , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Especificidad por Sustrato , Simulación del Acoplamiento Molecular , Cinética , Hidrólisis
15.
Nat Commun ; 15(1): 1489, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413572

RESUMEN

Blue denim, a billion-dollar industry, is currently dyed with indigo in an unsustainable process requiring harsh reducing and alkaline chemicals. Forming indigo directly in the yarn through indican (indoxyl-ß-glucoside) is a promising alternative route with mild conditions. Indican eliminates the requirement for reducing agent while still ending as indigo, the only known molecule yielding the unique hue of blue denim. However, a bulk source of indican is missing. Here, we employ enzyme and process engineering guided by techno-economic analyses to develop an economically viable drop-in indican synthesis technology. Rational engineering of PtUGT1, a glycosyltransferase from the indigo plant, alleviated the severe substrate inactivation observed with the wildtype enzyme at the titers needed for bulk production. We further describe a mild, light-driven dyeing process. Finally, we conduct techno-economic, social sustainability, and comparative life-cycle assessments. These indicate that the presented technologies have the potential to significantly reduce environmental impacts from blue denim dyeing with only a modest cost increase.


Asunto(s)
Indicán , Carmin de Índigo , Colorantes , Plantas , Ambiente
16.
J Synchrotron Radiat ; 20(Pt 4): 648-53, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23765310

RESUMEN

The macromolecular crystallography beamline I911-3, part of the Cassiopeia/I911 suite of beamlines, is based on a superconducting wiggler at the MAX II ring of the MAX IV Laboratory in Lund, Sweden. The beamline is energy-tunable within a range between 6 and 18 keV. I911-3 opened for users in 2005. In 2010-2011 the experimental station was completely rebuilt and refurbished such that it has become a state-of-the-art experimental station with better possibilities for rapid throughput, crystal screening and work with smaller samples. This paper describes the complete I911-3 beamline and how it is embedded in the Cassiopeia suite of beamlines.

17.
Proc Natl Acad Sci U S A ; 107(8): 3681-6, 2010 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-20133685

RESUMEN

Staphylococcus aureus secretes the SSL7 protein as part of its immune evasion strategy. The protein binds both complement C5 and IgA, yet it is unclear whether SSL7 cross-links these two proteins and, if so, what purpose this serves the pathogen. We have isolated a stable IgA-SSL7-C5 complex, and our crystal structure of the C5-SSL7 complex confirms that binding to C5 occurs exclusively through the C-terminal beta-grasp domain of SSL7 leaving the OB domain free to interact with IgA. SSL7 interacts with C5 >70 A from the C5a cleavage site without inducing significant conformational changes in C5, and efficient inhibition of convertase cleavage of C5 is shown to be IgA dependent. Inhibition of C5a production and bacteriolysis are all shown to require C5 and IgA binding while inhibition of hemolysis is achieved by the C5 binding SSL7 beta-grasp domain alone. These results provide a conceptual and structural basis for the development of a highly specific complement inhibitor preventing only the formation of the lytic membrane attack complex without affecting the important signaling functions of C5a.


Asunto(s)
Complemento C5/antagonistas & inhibidores , Complemento C5/química , Exotoxinas/inmunología , Staphylococcus aureus/inmunología , Animales , Complemento C5/inmunología , Cristalografía por Rayos X , Humanos , Mutación , Estructura Terciaria de Proteína , Conejos , Staphylococcus aureus/patogenicidad
18.
J Bacteriol ; 194(16): 4249-59, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22685275

RESUMEN

Isomaltooligosaccharides (IMO) have been suggested as promising prebiotics that stimulate the growth of probiotic bacteria. Genomes of probiotic lactobacilli from the acidophilus group, as represented by Lactobacillus acidophilus NCFM, encode α-1,6 glucosidases of the family GH13_31 (glycoside hydrolase family 13 subfamily 31) that confer degradation of IMO. These genes reside frequently within maltooligosaccharide utilization operons, which include an ATP-binding cassette transporter and α-glucan active enzymes, e.g., maltogenic amylases and maltose phosphorylases, and they also occur separated from any carbohydrate transport or catabolism genes on the genomes of some acidophilus complex members, as in L. acidophilus NCFM. Besides the isolated locus encoding a GH13_31 enzyme, the ABC transporter and another GH13 in the maltooligosaccharide operon were induced in response to IMO or maltotetraose, as determined by reverse transcription-PCR (RT-PCR) transcriptional analysis, suggesting coregulation of α-1,6- and α-1,4-glucooligosaccharide utilization loci in L. acidophilus NCFM. The L. acidophilus NCFM GH13_31 (LaGH13_31) was produced recombinantly and shown to be a glucan 1,6-α-glucosidase active on IMO and dextran and product-inhibited by glucose. The catalytic efficiency of LaGH13_31 on dextran and the dextran/panose (trisaccharide) efficiency ratio were the highest reported for this class of enzymes, suggesting higher affinity at distal substrate binding sites. The crystal structure of LaGH13_31 was determined to a resolution of 2.05 Å and revealed additional substrate contacts at the +2 subsite in LaGH13_31 compared to the GH13_31 from Streptococcus mutans (SmGH13_31), providing a possible structural rationale to the relatively high affinity for dextran. A comprehensive phylogenetic and activity motif analysis mapped IMO utilization enzymes from gut microbiota to rationalize preferential utilization of IMO by gut residents.


Asunto(s)
Glucosidasas/química , Glucosidasas/metabolismo , Lactobacillus acidophilus/enzimología , Lactobacillus acidophilus/metabolismo , Oligosacáridos/metabolismo , Probióticos , Sitios de Unión , Cristalografía por Rayos X , Perfilación de la Expresión Génica , Glucosidasas/genética , Lactobacillus acidophilus/química , Lactobacillus acidophilus/genética , Operón , Filogenia , Unión Proteica , Conformación Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Streptococcus mutans/química , Streptococcus mutans/enzimología , Streptococcus mutans/genética , Streptococcus mutans/metabolismo
19.
ACS Sustain Chem Eng ; 10(16): 5078-5083, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35493695

RESUMEN

Regioselective glycosylation is a chemical challenge, leading to multistep syntheses with protecting group manipulations, ultimately resulting in poor atom economy and compromised sustainability. Enzymes allow eco-friendly and regioselective bond formation with fully deprotected substrates in a single reaction. For the selective glucosylation of silibinin, a pharmaceutical challenged with low solubility, enzyme engineering has previously been employed, but the resulting yields and k cat were limited, prohibiting the application of the engineered catalyst. Here, we identified a naturally regioselective silibinin glucosyltransferase, UGT706F8, a family 1 glycosyltransferase from Zea mays. It selectively and efficiently (k cat = 2.1 ± 0.1 s-1; K M = 36.9 ± 5.2 µM; TTN = 768 ± 22) catalyzes the quantitative synthesis of silibinin 7-O-ß-d-glucoside. We solved the crystal structure of UGT706F8 and investigated the molecular determinants of regioselective silibinin glucosylation. UGT706F8 was the only regioselective enzyme among 18 glycosyltransferases found to be active on silibinin. We found the temperature optimum of UGT706F8 to be 34 °C and the pH optimum to be 7-8. Our results indicate that UGT706F8 is an efficient silibinin glycosyltransferase that enables biocatalytic production of silbinin 7-O-ß-d-glucoside.

20.
Microb Biotechnol ; 15(5): 1622-1632, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35084776

RESUMEN

The fluorinase enzyme represents the only biological mechanism capable of forming stable C-F bonds characterized in nature thus far, offering a biotechnological route to the biosynthesis of value-added organofluorines. The fluorinase is known to operate in a hexameric form, but the consequence(s) of the oligomerization status on the enzyme activity and its catalytic properties remain largely unknown. In this work, this aspect was explored by rationally engineering trimeric fluorinase variants that retained the same catalytic rate as the wild-type enzyme. These results ruled out hexamerization as a requisite for the fluorination activity. The Michaelis constant (KM ) for S-adenosyl-l-methionine, one of the substrates of the fluorinase, increased by two orders of magnitude upon hexamer disruption. Such a shift in S-adenosyl-l-methionine affinity points to a long-range effect of hexamerization on substrate binding - likely decreasing substrate dissociation and release from the active site. A practical application of trimeric fluorinase is illustrated by establishing in vitro fluorometabolite synthesis in a bacterial cell-free system.


Asunto(s)
Streptomyces , Proteínas Bacterianas/metabolismo , Metionina , Oxidorreductasas/metabolismo , S-Adenosilmetionina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA