Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 16(8): e1008736, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32745149

RESUMEN

Human cytomegalovirus (HCMV) is one of the main causative agents of congenital viral infection in neonates. HCMV infection also causes serious morbidity and mortality among organ transplant patients. Glycoprotein B (gB) is a major target for HCMV neutralizing antibodies, yet the underlying neutralization mechanisms remain largely unknown. Here we report that 3-25, a gB-specific monoclonal antibody previously isolated from a healthy HCMV-positive donor, efficiently neutralized 14 HCMV strains in both ARPE-19 cells and MRC-5 cells. The core epitope of 3-25 was mapped to a highly conserved linear epitope on antigenic domain 2 (AD-2) of gB. A 1.8 Å crystal structure of 3-25 Fab in complex with the peptide epitope revealed the molecular determinants of 3-25 binding to gB at atomic resolution. Negative-staining electron microscopy (EM) 3D reconstruction of 3-25 Fab in complex with de-glycosylated postfusion gB showed that 3-25 Fab fully occupied the gB trimer at the N-terminus with flexible binding angles. Functionally, 3-25 efficiently inhibited HCMV infection at a post-attachment step by interfering with viral membrane fusion, and restricted post-infection viral spreading in ARPE-19 cells. Interestingly, bivalency was required for HCMV neutralization by AD-2 specific antibody 3-25 but not the AD-4 specific antibody LJP538. In contrast, bivalency was not required for HCMV binding by both antibodies. Taken together, our results reveal the structural basis of gB recognition by 3-25 and demonstrate that inhibition of viral membrane fusion and a requirement of bivalency may be common for gB AD-2 specific neutralizing antibody.


Asunto(s)
Anticuerpos Antivirales/inmunología , Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Epítopos/inmunología , Proteínas del Envoltorio Viral/inmunología , Secuencias de Aminoácidos , Anticuerpos Neutralizantes/inmunología , Secuencia Conservada , Citomegalovirus/química , Citomegalovirus/genética , Citomegalovirus/fisiología , Infecciones por Citomegalovirus/virología , Epítopos/química , Epítopos/genética , Humanos , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Internalización del Virus
2.
J Infect Dis ; 223(11): 2001-2012, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33031517

RESUMEN

BACKGROUND: Cytomegalovirus (CMV) can cause congenital infection and is the leading cause of nongenetic newborn disabilities. V160, a conditionally replication-defective virus, is an investigational vaccine under evaluation for prevention of congenital CMV. The vaccine was well tolerated and induced both humoral and cellular immunity in CMV-seronegative trial participants. T-cell-mediated immunity is important for immune control of CMV. Here we describe efforts to understand the quality attributes of the T-cell responses induced by vaccination. METHODS: Using multicolor flow cytometry, we analyzed vaccine-induced T cells for memory phenotype, antigen specificity, cytokine profiles, and cytolytic potential. Moreover, antigen-specific T cells were sorted from 4 participants, and next-generation sequencing was used to trace clonal lineage development during the course of vaccination using T-cell receptor ß-chain sequences as identifiers. RESULTS: The results demonstrated that vaccination elicited polyfunctional CD4 and CD8 T cells to 2 dominant antigens, pp65 and IE1, with a predominantly effector phenotype. Analysis of T-cell receptor repertoires showed polyclonal expansion of pp65- and IE1-specific T cells after vaccination. CONCLUSION: V160 induced a genetically diverse and polyfunctional T-cell response and the data support further clinical development of V160 for prevention of CMV infection and congenital transmission. CLINICAL TRIALS REGISTRATION: NCT01986010.


Asunto(s)
Linfocitos T CD8-positivos , Infecciones por Citomegalovirus , Vacunas contra Citomegalovirus , Inmunidad Celular , Linfocitos T CD8-positivos/inmunología , Infecciones por Citomegalovirus/prevención & control , Vacunas contra Citomegalovirus/inmunología , Humanos , Vacunación
3.
Artículo en Inglés | MEDLINE | ID: mdl-33361306

RESUMEN

Human cytomegalovirus (HCMV) is a ubiquitous pathogen that can cause developmental disorders following congenital infection and life-threatening complications among transplant patients. Potent neutralizing monoclonal antibodies (MAbs) are promising drug candidates against HCMV infection. HCMV can infect a broad range of cell types. Therefore, single neutralizing antibodies targeting one HCMV glycoprotein often lack either potency or broad cell-type coverage. We previously characterized two human-derived HCMV neutralizing MAbs. One was the broadly neutralizing MAb 3-25, which targets the antigenic domain 2 of glycoprotein B (gB). The other was the highly potent MAb 2-18, which specifically recognizes the gH/gL/pUL128/130/131 complex (pentamer). To combine the strengths of gB- and pentamer-targeting MAbs, we developed an IgG-single-chain variable fragment (scFv) bispecific antibody by fusing the 2-18 scFv to the heavy-chain C terminus of MAb 3-25. The resulting bispecific antibody showed high-affinity binding to both gB and pentamer. Functionally, the bispecific antibody demonstrated a combined neutralization breadth and potency of the parental MAbs in multiple cell lines and inhibited postinfection viral spreading. Furthermore, the bispecific antibody was easily produced in CHO cells at a yield above 1 g/liter and showed a single-dose pharmacokinetic profile comparable to that of parental MAb 3-25 in rhesus macaques. Importantly, the bispecific antibody retained broadly and potent neutralizing activity after 21 days in circulation. Taken together, our research provides a proof-of-concept study for developing bispecific neutralizing antibody therapies against HCMV infection.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Cricetinae , Cricetulus , Glicoproteínas , Humanos , Macaca mulatta , Proteínas del Envoltorio Viral
4.
PLoS Pathog ; 15(7): e1007914, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31356650

RESUMEN

Human cytomegalovirus (HCMV) is a ubiquitous pathogen that can cause disability in newborns and serious clinical diseases in immunocompromised patients. HCMV has a large genome with enormous coding potential; its viral particles are equipped with complicated glycoprotein complexes and can infect a wide range of human cells. Although multiple host cellular receptors interacting with viral glycoproteins have been reported, the mechanism of HCMV infection remains a mystery. Here we report identification of adipocyte plasma membrane-associated protein (APMAP) as a novel modulator active in the early stage of HCMV infection. APMAP is necessary for HCMV infection in both epithelial cells and fibroblasts; knockdown of APMAP expression significantly reduced HCMV infection of these cells. Interestingly, ectopic expression of human APMAP in cells refractory to HCMV infection, such as canine MDCK and murine NIH/3T3 cells, promoted HCMV infection. Furthermore, reduction in viral immediate early (IE) gene transcription at 6 h post infection and delayed nucleus translocation of tegument delivered pp65 at 4 h post infection were detected in APMAP-deficient cells but not in the wildtype cells. These results suggest that APMAP plays a role in the early stage of HCMV infection. Results from biochemical studies of APMAP and HCMV proteins suggest that APMAP could participate in HCMV infection through interaction with gH/gL containing glycoprotein complexes at low pH and mediate nucleus translocation of tegument pp65. Taken together, our results suggest that APMAP functions as a modulator promoting HCMV infection in multiple cell types and is an important player in the complex HCMV infection mechanism.


Asunto(s)
Infecciones por Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/virología , Citomegalovirus/patogenicidad , Glicoproteínas de Membrana/metabolismo , Adipocitos/metabolismo , Adipocitos/virología , Animales , Membrana Celular/metabolismo , Membrana Celular/virología , Citomegalovirus/genética , Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/etiología , Perros , Células Epiteliales/metabolismo , Células Epiteliales/virología , Fibroblastos/metabolismo , Fibroblastos/virología , Técnicas de Inactivación de Genes , Interacciones Microbiota-Huesped , Humanos , Células de Riñón Canino Madin Darby , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/genética , Ratones , Células 3T3 NIH , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Estructurales Virales/metabolismo , Virulencia , Internalización del Virus
5.
J Virol ; 93(23)2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31511385

RESUMEN

Human cytomegalovirus (HCMV) can cause congenital infections, which are a leading cause of childhood disabilities. Since the rate of maternal-fetal transmission is much lower in naturally infected (HCMV-seropositive) women, we hypothesize that a vaccine candidate capable of eliciting immune responses analogous to those of HCMV-seropositive subjects may confer protection against congenital HCMV. We have previously described a replication-defective virus vaccine based on strain AD169 (D. Wang, D. C. Freed, X. He, F. Li, et al., Sci Transl Med 8:362ra145, 2016, https://doi.org/10.1126/scitranslmed.aaf9387). The vaccine, named V160, has been shown to be safe and immunogenic in HCMV-seronegative human subjects, eliciting both humoral and cellular immune responses (S. P. Adler, S. E. Starr, S. A. Plotkin, S. H. Hempfling, et al., J Infect Dis 220:411-419, 2019, https://doi.org/10.1093/infdis/171.1.26). Here, we further showed that sera from V160-immunized HCMV-seronegative subjects have attributes similar in quality to those from seropositive subjects, including high-avidity antibodies to viral antigens, coverage against a panel of genetically distinct clinical isolates, and protection against viral infection in diverse types of human cells in culture. More importantly, vaccination appeared efficient in priming the human immune system, inducing memory B cells in six V160 recipients at frequencies comparable to those of three HCMV-seropositive subjects. Our results demonstrate the ability of V160 to induce robust and durable humoral memory responses to HCMV, justifying further clinical evaluation of the vaccine against congenital HCMV.IMPORTANCEIn utero HCMV infection can lead to miscarriage or childhood disabilities, and an effective vaccine is urgently needed. Since children born to women who are seropositive prior to pregnancy are less likely to be affected by congenital HCMV infection, it has been hypothesized that a vaccine capable of inducing an immune response resembling the responses in HCMV-seropositive women may be effective. We previously described a replication-defective virus vaccine that has been demonstrated safe and immunogenic in HCMV-seronegative subjects. Here, we conducted additional analyses to show that the vaccine can induce antibodies with functional attributes similar to those from HCMV-seropositive subjects. Importantly, vaccination can induce long-lived memory B cells at frequencies comparable to those seen in HCMV-seropositive subjects. We conclude that this vaccine is a promising candidate that warrants further clinical evaluation for prevention of congenital HCMV.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/prevención & control , Vacunas contra Citomegalovirus/inmunología , Citomegalovirus/inmunología , Inmunidad Humoral/inmunología , Inmunización , Adulto , Anciano , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Antígenos Virales/sangre , Línea Celular , Infecciones por Citomegalovirus/congénito , Infecciones por Citomegalovirus/virología , Método Doble Ciego , Femenino , Humanos , Inmunidad Celular , Transmisión Vertical de Enfermedad Infecciosa/prevención & control , Masculino , Persona de Mediana Edad , Estados Unidos , Vacunación , Replicación Viral , Adulto Joven
6.
Virol J ; 17(1): 50, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32268919

RESUMEN

Antibody neutralization of cytomegalovirus (CMV) entry into diverse cell types is a key consideration for development of vaccines and immunotherapeutics. CMV entry into fibroblasts differs significantly from entry into epithelial or endothelial cells: fibroblast entry is mediated by gB and gH/gL/gO, whereas both epithelial and endothelial cell entry require an additional pentameric complex (PC) comprised of gH/gL/UL128/UL130/UL131A. Because PC-specific antibodies in CMV-seropositive human sera do not affect fibroblast entry but potently block entry into epithelial or endothelial cells, substantially higher neutralizing potencies for CMV-positive sera are observed when assayed using epithelial cells as targets than when using fibroblasts. That certain sera exhibit similar discordances between neutralizing potencies measured using epithelial vs. endothelial cells (Gerna G. et al.J Gen Virol, 89:853-865, 2008) suggested that additional mechanistic differences may also exist between epithelial and endothelial cell entry. To further explore this issue, neutralizing potencies using epithelial and endothelial cells were simultaneously determined for eight CMV-positive human sera, CMV-hyperimmune globulin, and a panel of monoclonal or anti-peptide antibodies targeting specific epitopes in gB, gH, gH/gL, or the PC. No significant differences were observed between epithelial and endothelial neutralizing potencies of epitope-specific antibodies, CMV-hyperimmune globulin, or seven of the eight human sera. However, one human serum exhibited a six-fold higher potency for neutralizing entry into epithelial cells vs. endothelial cells. These results suggest that epitopes exist that are important for epithelial entry but are less critical, or perhaps dispensable, for endothelial cell entry. Their existence should be considered when developing monoclonal antibody therapies or subunit vaccines representing limited epitopes.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Citomegalovirus/fisiología , Células Endoteliales/virología , Células Epiteliales/virología , Internalización del Virus , Animales , Línea Celular , Citomegalovirus/inmunología , Epítopos/inmunología , Humanos , Concentración 50 Inhibidora , Pruebas de Neutralización , Conejos
7.
Artículo en Inglés | MEDLINE | ID: mdl-29038280

RESUMEN

The host immune response to human cytomegalovirus (HCMV) is effective against HCMV reactivation from latency, though not sufficient to clear the virus. T cells are primarily responsible for the control of viral reactivation. When the host immune system is compromised, as in transplant recipients with immunosuppression, HCMV reactivation and progressive infection can cause serious morbidity and mortality. Adoptive T cell therapy is effective for the control of HCMV infection in transplant recipients. However, it is a highly personalized therapeutic regimen and is difficult to implement in routine clinical practice. In this study, we explored a bispecific-antibody strategy to direct non-HCMV-specific T cells to recognize and exert effector functions against HCMV-infected cells. Using a knobs-into-holes strategy, we constructed a bispecific antibody in which one arm is specific for CD3 and can trigger T cell activation, while the other arm, specific for HCMV glycoprotein B (gB), recognizes and marks HCMV-infected cells based on the expression of viral gB on their surfaces. We showed that this bispecific antibody was able to redirect T cells with specificity for HCMV-infected cells in vitro In the presence of HCMV infection, the engineered antibody was able to activate T cells with no HCMV specificity for cytokine production, proliferation, and the expression of phenotype markers unique to T cell activation. These results suggested the potential of engineered bispecific antibodies, such as the construct described here, as prophylactic or therapeutic agents against HCMV reactivation and infection.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Complejo CD3/inmunología , Infecciones por Citomegalovirus/tratamiento farmacológico , Infecciones por Citomegalovirus/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Proteínas del Envoltorio Viral/inmunología , Traslado Adoptivo , Anticuerpos Monoclonales Humanizados , Anticuerpos Antivirales , Especificidad de Anticuerpos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral
8.
J Virol ; 91(13)2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28381568

RESUMEN

Cytomegalovirus (CMV) entry into fibroblasts differs from entry into epithelial cells. CMV also spreads cell to cell and can induce syncytia. To gain insights into these processes, 27 antibodies targeting epitopes in CMV virion glycoprotein complexes, including glycoprotein B (gB), gH/gL, and the pentamer, were evaluated for their effects on viral entry and spread. No antibodies inhibited CMV spread in fibroblasts, including those with potent neutralizing activity against fibroblast entry, while all antibodies that neutralized epithelial cell entry also inhibited spread in epithelial cells and a correlation existed between the potencies of these two activities. This suggests that exposure of virions to the cell culture medium is obligatory during spread in epithelial cells but not in fibroblasts. In fibroblasts, the formation of syncytiumlike structures was impaired not only by antibodies to gB or gH/gL but also by antibodies to the pentamer, suggesting a potential role for the pentamer in promoting fibroblast fusion. Four antibodies reacted with linear epitopes near the N terminus of gH, exhibited strain specificity, and neutralized both epithelial cell and fibroblast entry. Five other antibodies recognized conformational epitopes in gH/gL and neutralized both fibroblast and epithelial cell entry. That these antibodies were strain specific for neutralizing fibroblast but not epithelial cell entry suggests that polymorphisms external to certain gH/gL epitopes may influence antibody neutralization during fibroblast but not epithelial cell entry. These findings may have implications for elucidating the mechanisms of CMV entry, spread, and antibody evasion and may assist in determining which antibodies may be most efficacious following active immunization or passive administration.IMPORTANCE Cytomegalovirus (CMV) is a significant cause of birth defects among newborns infected in utero and morbidity and mortality in transplant and AIDS patients. Monoclonal antibodies and vaccines targeting humoral responses are under development for prophylactic or therapeutic use. The findings reported here (i) confirm that cell-to-cell spread of CMV is sensitive to antibody inhibition in epithelial cells but not fibroblasts, (ii) demonstrate that antibodies can restrict the formation in vitro of syncytiumlike structures that resemble syncytial cytomegalic cells that are associated with CMV disease in vivo, and (iii) reveal that neutralization of CMV by antibodies to certain epitopes in gH or gH/gL is both strain and cell type dependent and can be governed by polymorphisms in sequences external to the epitopes. These findings serve to elucidate the mechanisms of CMV entry, spread, and antibody evasion and may have important implications for the development of CMV vaccines and immunotherapeutics.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Citomegalovirus/inmunología , Citomegalovirus/fisiología , Células Epiteliales/virología , Fibroblastos/virología , Internalización del Virus , Línea Celular , Humanos , Proteínas del Envoltorio Viral/inmunología
9.
J Virol ; 91(7)2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28077654

RESUMEN

Human cytomegalovirus (HCMV) is the leading cause of congenital viral infection, and developing a prophylactic vaccine is of high priority to public health. We recently reported a replication-defective human cytomegalovirus with restored pentameric complex glycoprotein H (gH)/gL/pUL128-131 for prevention of congenital HCMV infection. While the quantity of vaccine-induced antibody responses can be measured in a viral neutralization assay, assessing the quality of such responses, including the ability of vaccine-induced antibodies to cross-neutralize the field strains of HCMV, remains a challenge. In this study, with a panel of neutralizing antibodies from three healthy human donors with natural HCMV infection or a vaccinated animal, we mapped eight sites on the dominant virus-neutralizing antigen-the pentameric complex of glycoprotein H (gH), gL, and pUL128, pUL130, and pUL131. By evaluating the site-specific antibodies in vaccine immune sera, we demonstrated that vaccination elicited functional antiviral antibodies to multiple neutralizing sites in rhesus macaques, with quality attributes comparable to those of CMV hyperimmune globulin. Furthermore, these immune sera showed antiviral activities against a panel of genetically distinct HCMV clinical isolates. These results highlighted the importance of understanding the quality of vaccine-induced antibody responses, which includes not only the neutralizing potency in key cell types but also the ability to protect against the genetically diverse field strains.IMPORTANCE HCMV is the leading cause of congenital viral infection, and development of a preventive vaccine is a high public health priority. To understand the strain coverage of vaccine-induced immune responses in comparison with natural immunity, we used a panel of broadly neutralizing antibodies to identify the immunogenic sites of a dominant viral antigen-the pentameric complex. We further demonstrated that following vaccination of a replication-defective virus with the restored pentameric complex, rhesus macaques can develop broadly neutralizing antibodies targeting multiple immunogenic sites of the pentameric complex. Such analyses of site-specific antibody responses are imperative to our assessment of the quality of vaccine-induced immunity in clinical studies.


Asunto(s)
Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Infecciones por Citomegalovirus/prevención & control , Citomegalovirus/inmunología , Proteínas del Envoltorio Viral/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Especificidad de Anticuerpos , Línea Celular , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Mapeo Epitopo , Humanos , Macaca mulatta , Unión Proteica , Conejos , Vacunación , Vacunas Virales/administración & dosificación , Internalización del Virus
10.
J Biol Chem ; 290(26): 15985-95, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-25947373

RESUMEN

Congenital infection of human cytomegalovirus (HCMV) is one of the leading causes of nongenetic birth defects, and development of a prophylactic vaccine against HCMV is of high priority for public health. The gH/gL/pUL128-131 pentameric complex mediates HCMV entry into endothelial and epithelial cells, and it is a major target for neutralizing antibody responses. To better understand the mechanism by which antibodies interact with the epitopes of the gH/gL/pUL128-131 pentameric complex resulting in viral neutralization, we expressed and purified soluble gH/gL/pUL128-131 pentameric complex and gH/gL from Chinese hamster ovary cells to >95% purity. The soluble gH/gL, which exists predominantly as (gH/gL)2 homodimer with a molecular mass of 220 kDa in solution, has a stoichiometry of 1:1 and a pI of 6.0-6.5. The pentameric complex has a molecular mass of 160 kDa, a stoichiometry of 1:1:1:1:1, and a pI of 7.4-8.1. The soluble pentameric complex, but not gH/gL, adsorbs 76% of neutralizing activities in HCMV human hyperimmune globulin, consistent with earlier reports that the most potent neutralizing epitopes for blocking epithelial infection are unique to the pentameric complex. Functionally, the soluble pentameric complex, but not gH/gL, blocks viral entry to epithelial cells in culture. Our results highlight the importance of the gH/gL/pUL128-131 pentameric complex in HCMV vaccine design and emphasize the necessity to monitor the integrity of the pentameric complex during the vaccine manufacturing process.


Asunto(s)
Infecciones por Citomegalovirus/virología , Citomegalovirus/inmunología , Células Epiteliales/virología , Epítopos/inmunología , Glicoproteínas de Membrana/inmunología , Proteínas del Envoltorio Viral/inmunología , Internalización del Virus , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Cricetinae , Citomegalovirus/genética , Citomegalovirus/fisiología , Infecciones por Citomegalovirus/inmunología , Células Epiteliales/inmunología , Epítopos/genética , Humanos , Glicoproteínas de Membrana/genética , Unión Proteica , Proteínas del Envoltorio Viral/genética
11.
Proc Natl Acad Sci U S A ; 110(51): E4997-5005, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24297878

RESUMEN

Human cytomegalovirus (HCMV) can cause serious morbidity/mortality in transplant patients, and congenital HCMV infection can lead to birth defects. Developing an effective HCMV vaccine is a high medical priority. One of the challenges to the efforts has been our limited understanding of the viral antigens important for protective antibodies. Receptor-mediated viral entry to endothelial/epithelial cells requires a glycoprotein H (gH) complex comprising five viral proteins (gH, gL, UL128, UL130, and UL131). This gH complex is notably missing from HCMV laboratory strains as well as HCMV vaccines previously evaluated in the clinic. To support a unique vaccine concept based on the pentameric gH complex, we established a panel of 45 monoclonal antibodies (mAbs) from a rabbit immunized with an experimental vaccine virus in which the expression of the pentameric gH complex was restored. Over one-half (25 of 45) of the mAbs have neutralizing activity. Interestingly, affinity for an antibody to bind virions was not correlated with its ability to neutralize the virus. Genetic analysis of the 45 mAbs based on their heavy- and light-chain sequences identified at least 26 B-cell linage groups characterized by distinct binding or neutralizing properties. Moreover, neutralizing antibodies possessed longer complementarity-determining region 3 for both heavy and light chains than those with no neutralizing activity. Importantly, potent neutralizing mAbs reacted to the pentameric gH complex but not to gB. Thus, the pentameric gH complex is the primary target for antiviral antibodies by vaccination.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra Citomegalovirus/inmunología , Citomegalovirus/inmunología , Complejos Multiproteicos/inmunología , Proteínas del Envoltorio Viral/inmunología , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Neutralizantes/genética , Anticuerpos Antivirales/genética , Regiones Determinantes de Complementariedad/genética , Regiones Determinantes de Complementariedad/inmunología , Citomegalovirus/genética , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/prevención & control , Vacunas contra Citomegalovirus/genética , Femenino , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/inmunología , Cadenas Ligeras de Inmunoglobulina/genética , Cadenas Ligeras de Inmunoglobulina/inmunología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/inmunología , Complejos Multiproteicos/genética , Conejos , Proteínas del Envoltorio Viral/genética
12.
Cell Immunol ; 278(1-2): 113-9, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23121983

RESUMEN

Cyclic diguanylate (c-di-GMP), a bacterial signaling molecule, possesses protective immunostimulatory activity in bacterial challenge models. This study explored the potential of c-di-GMP as a vaccine adjuvant comparing it with LPS, CpG oligonucleotides, and a conventional aluminum salt based adjuvant. In this evaluation, c-di-GMP was a more potent activator of both humoral and Th1-like immune responses as evidenced by the robust IgG2a antibody response it induced in mice and the strong IFN-γ, TNF-α and IP-10 responses, it elicited in mice and in vitro in non-human primate peripheral blood mononuclear cells. Further, compared to LPS or CpG, c-di-GMP demonstrated a more pronounced ability to induce germinal center formation, a hallmark of long-term memory, in immunized mice. Together, these data add to the growing body of evidence supporting the utility of c-di-GMP as an adjuvant in vaccination for sustained and robust immune responses and provide a rationale for further evaluation in appropriate models of immunization.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Anticuerpos Antibacterianos/biosíntesis , GMP Cíclico/análogos & derivados , Inmunoglobulina G/biosíntesis , Compuestos de Alumbre/administración & dosificación , Animales , Anticuerpos Antibacterianos/inmunología , GMP Cíclico/administración & dosificación , GMP Cíclico/inmunología , Femenino , Centro Germinal/inmunología , Antígenos de Superficie de la Hepatitis B/administración & dosificación , Humanos , Inmunidad Celular , Inmunidad Humoral , Inmunización , Inmunoglobulina G/inmunología , Memoria Inmunológica , Interferón gamma/biosíntesis , Interferón gamma/inmunología , Interleucina-10/biosíntesis , Interleucina-10/inmunología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Lipopolisacáridos/administración & dosificación , Lipopolisacáridos/inmunología , Macaca mulatta , Ratones , Oligodesoxirribonucleótidos/administración & dosificación , Oligodesoxirribonucleótidos/inmunología , Células TH1/efectos de los fármacos , Células TH1/inmunología , Células TH1/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/inmunología
13.
Sci Adv ; 8(10): eabm2546, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35275718

RESUMEN

Human cytomegalovirus (HCMV) encodes multiple surface glycoprotein complexes to infect a variety of cell types. The HCMV Pentamer, composed of gH, gL, UL128, UL130, and UL131A, enhances entry into epithelial, endothelial, and myeloid cells by interacting with the cell surface receptor neuropilin 2 (NRP2). Despite the critical nature of this interaction, the molecular determinants that govern NRP2 recognition remain unclear. Here, we describe the cryo-EM structure of NRP2 bound to Pentamer. The high-affinity interaction between these proteins is calcium dependent and differs from the canonical carboxyl-terminal arginine (CendR) binding that NRP2 typically uses. We also determine the structures of four neutralizing human antibodies bound to the HCMV Pentamer to define susceptible epitopes. Two of these antibodies compete with NRP2 binding, but the two most potent antibodies recognize a previously unidentified epitope that does not overlap the NRP2-binding site. Collectively, these findings provide a structural basis for HCMV tropism and antibody-mediated neutralization.

14.
J Virol ; 84(6): 2996-3003, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20042509

RESUMEN

The prophylactic efficacies of several multivalent replication-incompetent adenovirus serotype 5 (Ad5) vaccines were examined in rhesus macaques using an intrarectal high-dose simian immunodeficiency virus SIVmac239 challenge model. Cohorts of Mamu-A*01(+)/B*17(-) Indian rhesus macaques were immunized with one of several combinations of Ad5 vectors expressing Gag, Pol, Nef, and Env gp140; for comparison, a Mamu-A*01(+) cohort was immunized using the Ad5 vector alone. There was no sign of immunological interference between antigens in the immunized animals. In general, expansion of the antigen breadth resulted in more favorable virological outcomes. In particular, the order of efficacy trended as follows: Gag/Pol/Nef/Env approximately Gag/Pol > Gag approximately Gag/Pol/Nef > Nef. However, the precision in ranking the vaccines based on the study results may be limited by the cohort size, and as such, may warrant additional testing. The implications of these results in light of the recent discouraging results of the phase IIb study of the trivalent Ad5 HIV-1 vaccine are discussed.


Asunto(s)
Adenoviridae/inmunología , Vacunas contra el SIDAS/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios/inmunología , Vacunas contra el SIDA/inmunología , Adenoviridae/genética , Animales , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Ensayos Clínicos Fase II como Asunto , Humanos , Macaca mulatta/inmunología , Macaca mulatta/virología , Pruebas de Neutralización , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Virus de la Inmunodeficiencia de los Simios/genética , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Carga Viral , Viremia/inmunología
15.
J Immunol ; 182(2): 980-7, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19124741

RESUMEN

Programmed Cell Death 1 (PD-1) plays a crucial role in immunomodulation. Binding of PD-1 to its ligand receptors down-regulates immune responses, and published reports suggest that this immune modulation is exploited in cases of tumor progression or chronic viral infection to evade immune surveillance. Thus, blockade of this signal could restore or enhance host immune functions. To test this hypothesis, we generated a panel of mAbs specific to human PD-1 that block PD ligand 1 and tested them for in vitro binding, blocking, and functional T cell responses, and evaluated a lead candidate in two in vivo rhesus macaque (Macaca mulatta) models. In the first therapeutic model, chronically SIV-infected macaques were treated with a single infusion of anti-PD-1 mAb; viral loads increased transiently before returning to, or falling below, pretreatment baselines. In the second prophylactic model, naive macaques were immunized with an SIV-gag adenovirus vector vaccine. Induced PD-1 blockade caused a statistically significant (p<0.05) increase in the peak percentage of T cells specific for the CM9 Gag epitope. These new results on PD-1 blockade in nonhuman primates point to a broader role for PD-1 immunomodulation and to potential applications in humans.


Asunto(s)
Antígenos CD/inmunología , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/inmunología , Vacunas contra el SIDAS/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Animales , Anticuerpos Bloqueadores/metabolismo , Anticuerpos Bloqueadores/fisiología , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales/fisiología , Antígenos CD/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Antígeno B7-H1 , Línea Celular , Enfermedad Crónica , Humanos , Inmunoglobulina G/fisiología , Macaca mulatta , Ratones , Ratones Endogámicos BALB C , Receptor de Muerte Celular Programada 1 , Vacunas contra el SIDAS/administración & dosificación , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Carga Viral
16.
NPJ Vaccines ; 6(1): 79, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078915

RESUMEN

A conditionally replication-defective human cytomegalovirus (HCMV) vaccine, V160, was shown to be safe and immunogenic in a two-part, double-blind, randomized, placebo-controlled phase I clinical trial (NCT01986010). However, the specificities and functional properties of V160-elicited antibodies remain undefined. Here, we characterized 272 monoclonal antibodies (mAbs) isolated from single memory B cells of six V160-vaccinated subjects. The mAbs bind to diverse HCMV antigens, including multiple components of the pentamer, gB, and tegument proteins. The most-potent neutralizing antibodies target the pentamer-UL subunits. The binding sites of the antibodies overlap with those of antibodies responding to natural HCMV infection. The majority of the neutralizing antibodies target the gHgL subunit. The non-neutralizing antibodies predominantly target the gB and pp65 proteins. Sequence analysis indicated that V160 induced a class of gHgL antibodies expressing the HV1-18/KV1-5 germline genes in multiple subjects. This study provides valuable insights into primary targets for anti-HCMV antibodies induced by V160 vaccination.

17.
Vaccine ; 39(51): 7446-7456, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34852943

RESUMEN

Adjuvants have long been explored to enhance vaccine efficacy. Current adjuvants approved for human vaccines are mostly studied for their ability to improve antibody responses. There remains a need for development of novel adjuvants, especially those able to enhance cell-mediated immunity (CMI). In this preclinical study we assessed the effect of two novel adjuvants, a delta inulin microparticle Advax formulated with or without a toll-like receptor 9 (TLR9) agonist CpG oligonucleotide, and a Merck & Co., Inc., Kenilworth, NJ, USA proprietary lipid nanoparticle (LNP), on immune responses elicited by V160, an experimental replication-defective human cytomegalovirus vaccine. Adult rhesus macaques were immunized with a low dose of V160 (10 units) either alone or in combination with the adjuvants as compared to those immunized with a high dose of V160 alone (100 units). While neither adjuvant conferred a significant benefit to vaccine-elicited humoral immune responses at the dose tested, both enhanced cellular immune responses to V160, where Advax promoted both CD4+ and CD8+ T cells and LNP predominantly impacted the CD4+ T cell response. Transcriptome analyses of peripheral blood samples demonstrated different modes of action for these adjuvants. One day post vaccination, LNP induced upregulation of a large number of genes involved in the innate immune response similar to those triggered by viral infection. In contrast, Advax did not activate any known inflammatory pathways and did not significantly impact gene expression pattern until day 7 post administration, suggesting a unique, non-inflammatory mechanism. These data warrant further exploration of Advax and LNP as adjuvants in clinical trials for vaccines desiring to elicit both humoral and T cell responses.


Asunto(s)
Vacunas contra Citomegalovirus , Adyuvantes Inmunológicos , Animales , Anticuerpos Antivirales , Linfocitos T CD8-positivos , Citomegalovirus , Humanos , Inmunidad Humoral , Liposomas , Macaca mulatta , Nanopartículas , Vacunación , Eficacia de las Vacunas
18.
Vaccines (Basel) ; 9(11)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34835271

RESUMEN

Emerging evidence demonstrates a connection between microbiome composition and suboptimal response to vaccines (vaccine hyporesponse). Harnessing the interaction between microbes and the immune system could provide novel therapeutic strategies for improving vaccine response. Currently we do not fully understand the mechanisms and dynamics by which the microbiome influences vaccine response. Using both mouse and non-human primate models, we report that short-term oral treatment with a single antibiotic (vancomycin) results in the disruption of the gut microbiome and this correlates with a decrease in systemic levels of antigen-specific IgG upon subsequent parenteral vaccination. We further show that recovery of microbial diversity before vaccination prevents antibiotic-induced vaccine hyporesponse, and that the antigen specific IgG response correlates with the recovery of microbiome diversity. RNA sequencing analysis of small intestine, spleen, whole blood, and secondary lymphoid organs from antibiotic treated mice revealed a dramatic impact on the immune system, and a muted inflammatory signature is correlated with loss of bacteria from Lachnospiraceae, Ruminococcaceae, and Clostridiaceae. These results suggest that microbially modulated immune pathways may be leveraged to promote vaccine response and will inform future vaccine design and development strategies.

19.
J Virol ; 83(14): 7040-8, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19403680

RESUMEN

Development of a vaccine for the common cold has been thwarted by the fact that there are more than 100 serotypes of human rhinovirus (HRV). We previously demonstrated that the HRV14 capsid is dynamic and transiently displays the buried N termini of viral protein 1 (VP1) and VP4. Here, further evidence for this "breathing" phenomenon is presented, using antibodies to several peptides representing the N terminus of VP4. The antibodies form stable complexes with intact HRV14 virions and neutralize infectivity. Since this region of VP4 is highly conserved among all of the rhinoviruses, antiviral activity by these anti-VP4 antibodies is cross-serotypic. The antibodies inhibit HRV16 infectivity in a temperature- and time-dependent manner consistent with the breathing behavior. Monoclonal and polyclonal antibodies raised against the 30-residue peptide do not react with peptides shorter than 24 residues, suggesting that these peptides are adopting three-dimensional conformations that are highly dependent upon the length of the peptide. Furthermore, there is evidence that the N termini of VP4 are interacting with each other upon extrusion from the capsid. A Ser5Cys mutation in VP4 yields an infectious virus that forms cysteine cross-links in VP4 when the virus is incubated at room temperature but not at 4 degrees C. The fact that all of the VP4s are involved in this cross-linking process strongly suggests that VP4 forms specific oligomers upon extrusion. Together these results suggest that it may be possible to develop a pan-serotypic peptide vaccine to HRV, but its design will likely require details about the oligomeric structure of the exposed termini.


Asunto(s)
Anticuerpos Antivirales/inmunología , Proteínas de la Cápside/inmunología , Infecciones por Picornaviridae/inmunología , Rhinovirus/inmunología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Línea Celular , Reacciones Cruzadas , Mapeo Epitopo , Humanos , Datos de Secuencia Molecular , Pruebas de Neutralización , Infecciones por Picornaviridae/virología , Conejos , Rhinovirus/química , Rhinovirus/genética
20.
Virology ; 548: 182-191, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32838941

RESUMEN

Human cytomegalovirus (HCMV) is the most common congenital infection. A glycoprotein B (gB) subunit vaccine (gB/MF59) is the most efficacious clinically tested to date, having achieved 50% protection against primary infection of HCMV-seronegative women. We previously identified that gB/MF59 vaccination primarily elicits non-neutralizing antibody responses, with variable binding to gB genotypes, and protection associated with binding to membrane-associated gB. We hypothesized that gB-specific non-neutralizing antibody binding breadth and function are dependent on epitope and genotype specificity, and ability to interact with membrane-associated gB. We mapped twenty-four gB-specific monoclonal antibodies (mAbs) from naturally HCMV-infected individuals for gB domain specificity, genotype preference, and ability to mediate phagocytosis or NK cell activation. gB-specific mAbs were primarily specific for Domain II and demonstrated variable binding to gB genotypes. Two mAbs facilitated phagocytosis with binding specificities of Domain II and AD2. This investigation provides novel understanding on the relationship between gB domain specificity and antigenic variability on gB-specific antibody effector functions.


Asunto(s)
Anticuerpos Antivirales/inmunología , Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Proteínas del Envoltorio Viral/inmunología , Adulto , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Especificidad de Anticuerpos , Citomegalovirus/genética , Infecciones por Citomegalovirus/sangre , Infecciones por Citomegalovirus/virología , Femenino , Humanos , Masculino , Proteínas del Envoltorio Viral/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA