Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36982412

RESUMEN

Food spoilage is an ongoing global issue that contributes to rising carbon dioxide emissions and increased demand for food processing. This work developed anti-bacterial coatings utilising inkjet printing of silver nano-inks onto food-grade polymer packaging, with the potential to enhance food safety and reduce food spoilage. Silver nano-inks were synthesised via laser ablation synthesis in solution (LaSiS) and ultrasound pyrolysis (USP). The silver nanoparticles (AgNPs) produced using LaSiS and USP were characterised using transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, UV-Vis spectrophotometry and dynamic light scattering (DLS) analysis. The laser ablation technique, operated under recirculation mode, produced nanoparticles with a small size distribution with an average diameter ranging from 7-30 nm. Silver nano-ink was synthesised by blending isopropanol with nanoparticles dispersed in deionised water. The silver nano-inks were printed on plasma-cleaned cyclo-olefin polymer. Irrespective of the production methods, all silver nanoparticles exhibited strong antibacterial activity against E. coli with a zone of inhibition exceeding 6 mm. Furthermore, silver nano-inks printed cyclo-olefin polymer reduced the bacterial cell population from 1235 (±45) × 106 cell/mL to 960 (±110) × 106 cell/mL. The bactericidal performance of silver-coated polymer was comparable to that of the penicillin-coated polymer, wherein a reduction in bacterial population from 1235 (±45) × 106 cell/mL to 830 (±70) × 106 cell/mL was observed. Finally, the ecotoxicity of the silver nano-ink printed cyclo-olefin polymer was tested with daphniids, a species of water flea, to simulate the release of coated packaging into a freshwater environment.


Asunto(s)
Nanopartículas del Metal , Plata , Plata/farmacología , Plata/química , Embalaje de Alimentos , Nanopartículas del Metal/química , Escherichia coli , Antibacterianos/farmacología , Antibacterianos/química , Bacterias , Espectroscopía Infrarroja por Transformada de Fourier , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química
2.
Nutrients ; 15(22)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38004148

RESUMEN

Lactic acid bacteria are traditionally applied in a variety of fermented food products, and they have the ability to produce a wide range of bioactive ingredients during fermentation, including vitamins, bacteriocins, bioactive peptides, and bioactive compounds. The bioactivity and health benefits associated with these ingredients have garnered interest in applications in the functional dairy market and have relevance both as components produced in situ and as functional additives. This review provides a brief description of the regulations regarding the functional food market in the European Union, as well as an overview of some of the functional dairy products currently available in the Irish and European markets. A better understanding of the production of these ingredients excreted by lactic acid bacteria can further drive the development and innovation of the continuously growing functional food market.


Asunto(s)
Lactobacillales , Fermentación , Alimentos Funcionales , Productos Lácteos/microbiología , Ácido Láctico
3.
Curr Res Food Sci ; 7: 100593, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37790857

RESUMEN

Lactobacillus rhamnosus (L. rhamnosus) is a commensal bacterium with health-promoting properties and with a wide range of applications within the food industry. To improve and optimize the control of L. rhamnosus biomass production in batch and fed-batch bioprocesses, this study proposes the application of artificial neural network (ANN) modelling to improve process control and monitoring, with potential future implementation as a basis for a digital twin. Three ANNs were developed using historical data from ten bioprocesses. These ANNs were designed to predict the biomass in batch bioprocesses with different media compositions, predict biomass in fed-batch bioprocesses, and predict the growth rate in fed-batch bioprocesses. The immunomodulatory effect of the L. rhamnosus samples was examined and found to elicit an anti-inflammatory response as evidenced by the inhibition of IL-6 and TNF-α secretion. Overall, the findings of this study reinforce the potential of ANN modelling for bioprocess optimization aimed at improved control for maximising the volumetric productivity of L. rhamnosus as an immunomodulatory agent with applications in the functional food industry.

4.
Appl Microbiol Biotechnol ; 93(2): 575-84, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21845386

RESUMEN

Biological reaction calorimetry, also known as biocalorimetry, has led to extensive applications in monitoring and control of different bioprocesses. A simple real-time estimator for biomass and growth rate was formulated, based on in-line measured metabolic heat flow values. The performance of the estimator was tested in a unique bench-scale calorimeter (BioRC1), improved to a sensitivity range of 8 mW l(-1) in order to facilitate the monitoring of even weakly exothermic biochemical reactions. A proportional-integral feedback control strategy based on these estimators was designed and implemented to control the growth rate of Candida utilis, Kluyveromyces marxianus and Pichia pastoris by regulating an exponential substrate feed. Maintaining a particular specific growth rate throughout a culture is essential for reproducible product quality in industrial bioprocesses and therefore a key sequence for the step from quality by analysis to quality by design. The potential of biocalorimetry as a reliable biomass monitoring tool and as a key part of a robust control strategy for aerobic fed-batch cultures of Crabtree-negative yeast cells in defined growth medium was investigated. Presenting controller errors of less than 4% in the best cases, the approach paves the way for the development of a generally applicable process analytical technology platform for monitoring and control of microbial fed-batch cultures.


Asunto(s)
Fenómenos Bioquímicos , Calorimetría/métodos , Calor , Levaduras/crecimiento & desarrollo , Levaduras/metabolismo , Aerobiosis , Biomasa , Medios de Cultivo/química
5.
Nutrients ; 14(14)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35889895

RESUMEN

Lactic acid bacteria (LAB) are capable of synthesising metabolites known as exopolysaccharides (EPS) during fermentation. Traditionally, EPS plays an important role in fermented dairy products through their gelling and thickening properties, but they can also be beneficial to human health. This bioactivity has gained attention in applications for functional foods, which leads them to have prebiotic, immunomodulatory, antioxidant, anti-tumour, cholesterol-lowering and anti-obesity activity. Understanding the parameters and conditions is crucial to optimising the EPS yields from LAB for applications in the food industry. This review provides an overview of the functional food market together with the biosynthesis of EPS. Factors influencing the production of EPS as well as methods for isolation, characterisation and quantification are reviewed. Finally, the health benefits associated with EPS are discussed.


Asunto(s)
Productos Lácteos Cultivados , Lactobacillales , Productos Lácteos Cultivados/microbiología , Fermentación , Microbiología de Alimentos , Alimentos Funcionales , Humanos , Lactobacillales/metabolismo , Polisacáridos Bacterianos/metabolismo
6.
Materials (Basel) ; 15(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35591324

RESUMEN

Every year, the EU emits 13.4 Mt of CO2 solely from plastic production, with 99% of all plastics being produced from fossil fuel sources, while those that are produced from renewable sources use food products as feedstocks. In 2019, 29 Mt of plastic waste was collected in Europe. It is estimated that 32% was recycled, 43% was incinerated and 25% was sent to landfill. It has been estimated that life-sciences (biology, medicine, etc.) alone create plastic waste of approximately 5.5 Mt/yr, the majority being disposed of by incineration. The vast majority of this plastic waste is made from fossil fuel sources, though there is a growing interest in the possible use of bioplastics as a viable alternative for single-use lab consumables, such as petri dishes, pipette tips, etc. However, to-date only limited bioplastic replacement examples exist. In this review, common polymers used for labware are discussed, along with examining the possibility of replacing these materials with bioplastics, specifically polylactic acid (PLA). The material properties of PLA are described, along with possible functional improvements dure to additives. Finally, the standards and benchmarks needed for assessing bioplastics produced for labware components are reviewed.

7.
Adv Biochem Eng Biotechnol ; 132: 249-80, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23183690

RESUMEN

With increasing pressure from regulatory authorities on industry to develop processes embracing process analytical technology (PAT) initiatives, there is a growing demand to establish reliable tools and systems capable of meeting this need. With regard to monitoring and control of bioprocesses, this need translates to a search for robust instrumentation capable of monitoring the critical process parameters in real time. The application of such technologies at all stages of the process, from the initial R&D phase to process optimisation and production, enhances process understanding and paves the way for the development of control platforms. An examination of the PAT concept and selected tools (NIR, MIR, Raman, dielectric spectroscopy and calorimetry) are presented here. A description of each tool is given, with particular emphasis on the nature of the signal produced and how these relate to measurements of biomass, metabolites and product. A description of the signal processing that is necessary to gain meaningful results from the different tools is also given, together with online data reconciliation techniques based on mass and energy balances. Many techniques such as those based on vibrational spectroscopy are of particular interest, since they are capable of monitoring several critical process parameters which are typically controlled in a bioprocess. A window of application for each of the techniques, when used in the area of bioprocessing, is suggested based on their uses and inherent limitations.


Asunto(s)
Bioensayo/métodos , Procesamiento Automatizado de Datos/métodos , Sistemas en Línea , Biomasa , Calorimetría/métodos , Análisis Espectral/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA