Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 320(2): H511-H519, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33275519

RESUMEN

In sleep apnea, airway obstruction causes intermittent hypoxia (IH). In animal studies, IH-dependent hypertension is associated with loss of vasodilator hydrogen sulfide (H2S), and increased H2S activation of sympathetic nervous system (SNS) activity in the carotid body. We previously reported that inhibiting cystathionine γ-lyase (CSE) to prevent H2S synthesis augments vascular resistance in control rats. The goal of this study was to evaluate the contribution of IH-induced changes in CSE signaling to increased blood pressure and vascular resistance. We hypothesized that chronic IH exposure eliminates CSE regulation of blood pressure (BP) and vascular resistance. In rats instrumented with venous catheters, arterial telemeters, and flow probes on the main mesenteric artery, the CSE inhibitor dl-propargylglycine (PAG, 50 mg/kg/day i.v. for 5 days) increased BP in Sham rats but decreased BP in IH rats [in mmHg, Sham (n = 11): 114 ± 4 to 131 ± 6; IH (n = 8): 131 ± 8 to 115 ± 7 mmHg, P < 0.05]. PAG treatment increased mesenteric vascular resistance in Sham rats but decreased it in IH rats (day 5/day 1: Sham: 1.50 ± 0.07; IH: 0.85 ± 0.19, P < 0.05). Administration of the ganglionic blocker hexamethonium (to evaluate SNS activity) decreased mesenteric resistance in PAG-treated Sham rats more than in saline-treated Sham rats or PAG-treated IH rats. CSE immunoreactivity in IH carotid bodies compared with those from Sham rats. However, CSE staining in small mesenteric arteries was less in arteries from IH than in Sham rats but not different in larger arteries (inner diameter > 200 µm). These results suggest endogenous H2S regulates blood pressure and vascular resistance, but this control is lost after IH exposure with decreased CSE expression in resistance size arteries. IH exposure concurrently increases carotid body CSE expression and relative SNS control of blood pressure, suggesting both vascular and carotid body H2S generation contribute to blood pressure regulation.NEW & NOTEWORTHY These results suggest that CSE's protective role in the vasculature is impaired by simulated sleep apnea, which also upregulates CSE in the carotid body. Thus, this enzyme system can exert both pro- and antihypertensive effects and may contribute to elevated SNS outflow in sleep apnea.


Asunto(s)
Circulación Sanguínea , Presión Sanguínea , Gasotransmisores/metabolismo , Sulfuro de Hidrógeno/metabolismo , Síndromes de la Apnea del Sueño/metabolismo , Alquinos/farmacología , Animales , Antihipertensivos/farmacología , Cuerpo Carotídeo/efectos de los fármacos , Cuerpo Carotídeo/metabolismo , Cuerpo Carotídeo/fisiopatología , Cistationina gamma-Liasa/antagonistas & inhibidores , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Inhibidores Enzimáticos/farmacología , Gasotransmisores/sangre , Glicina/análogos & derivados , Glicina/farmacología , Hexametonio/farmacología , Sulfuro de Hidrógeno/sangre , Masculino , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/metabolismo , Arterias Mesentéricas/fisiopatología , Ratas , Ratas Sprague-Dawley , Síndromes de la Apnea del Sueño/fisiopatología , Resistencia Vascular
2.
Artículo en Inglés | MEDLINE | ID: mdl-33718692

RESUMEN

Bone tissue engineering (BTE) aims to develop strategies to regenerate damaged or diseased bone using a combination of cells, growth factors, and biomaterials. This article highlights recent advances in BTE, with particular emphasis on the role of the biomaterials as scaffolding material to heal bone defects. Studies encompass the utilization of bioceramics, composites, and myriad hydrogels that have been fashioned by injection molding, electrospinning, and 3D bioprinting over recent years, with the aim to provide an insight into the progress of BTE along with a commentary on their scope and possibilities to aid future research. The biocompatibility and structural efficacy of some of these biomaterials are also discussed.

3.
Int J Nanomedicine ; 15: 5097-5111, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32764939

RESUMEN

INTRODUCTION: In this in-vitro study, we designed a 3D printed composite of zinc oxide (ZnO) nanoparticles (NPs) with photocatalytic activities encapsulated within hydrogel (alginate) constructs, for antibacterial purposes applicable towards wound healing. We primarily sought to confirm the mechanical properties and cell compatibility of these ZnO NP infused scaffolds. METHODS: The antibacterial property of the ZnO NPs was confirmed by hydroxyl radical generation using ultraviolet (U.V.) photocatalysis. Titanium dioxide (TiO2), a well-known antibacterial compound, was used as a positive control (1% w/v) for the ZnO NP-based alginate constructs and their antibacterial efficacies compared. Among the ZnO group, 3D printed gels containing 0.5% and 1% w/v of ZnO were analyzed and compared with manually casted samples via SEM, swelling evaluation, and rheological analysis. Envisioning an in-vivo application for the 3D printed ZnO NP-based alginates, we studied their antibacterial properties by bacterial broth testing, cytocompatibility via live/dead assay, and moisture retention capabilities utilizing a humidity sensor. RESULTS: 3D printed constructs revealed significantly greater pore sizes and enhanced structural stability compared to manually casted samples. For all samples, the addition of ZnO or TiO2 resulted in significantly stiffer gels in comparison with the alginate control. Bacterial resistance testing on Staphylococcus epidermidis indicated the addition of ZnO NPs to the gels decreased bacterial growth when compared to the alginate only gels. Cell viability of STO-fibroblasts was not adversely affected by the addition of ZnO NPs to the alginate gels. Furthermore, the addition of increasing doses of ZnO NPs to the alginate demonstrated increased humidity retention in gels. DISCUSSION: The customization of 3D printed alginates containing antibacterial ZnO NPs leads to an alternative that allows accessible mobility of molecular exchange required for improving chronic wound healing. This scaffold can provide a cost-effective and durable antibacterial treatment option.


Asunto(s)
Alginatos/química , Alginatos/farmacología , Hidrogeles/química , Nanopartículas/química , Cicatrización de Heridas/efectos de los fármacos , Óxido de Zinc/química , Supervivencia Celular/efectos de los fármacos , Fibroblastos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA